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Chapter 1

Introduction

The language inclusion problem is a fundamental and classical problem which
consists in deciding, given two languages L1 and L2, whether L1 ⊆ L2. This problem
has a wide variety of applications, ranging from automata-based verification [Kup18],
reasoning for logical theories [Esp17] to type systems [HC14]. Whether the language
inclusion problem is computable or not, depends on the nature of the languages and,
also if it turns out to be computable, it is usually computationally intensive.

We will formally see that a language is ultimately a set of words, that are just
concatenated symbols from one alphabet Σ. In general, languages are not finite, so that
it is not possible to simply compute all the words in two languages and compare them.
A vast assortment of techniques and algorithms have been proposed in the past to solve
the problem for certain classes of languages [GRV19; OW04; Abd+11]. In particular,
we are interested in the language inclusion problem between ω-regular languages, that
are languages of infinite words recognized by Büchi automata [CG77]. We consider
the framework put forward in [DG20], that relies on abstract interpretation [CC77]
techniques in order to solve the language inclusion problem.

L2

L1

Figure 1.1: Representation of two languages L1, L2 such that L1 ⊆ L2

The theory of Abstract Interpretation, introduced in [CC77], is a general theory
of the approximation of formal program semantics. It is an invaluable tool to prove
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2 CHAPTER 1. INTRODUCTION

the correctness of a static analysis, as it makes it possible to express mathematically
the link between the output of a practical, approximate analysis, and the original,
uncomputable program semantics [Min17]. Although the most well-known application
of abstract interpretation theory is program verification [Cou+05], during the years it
has been exploited in many different fields: from efficient algorithms to compute the
simulation equivalence [RT07], to artificial intelligence [RZ19]. Most of the time, the
abstractions are sound but not complete, giving up precision in order to gain decidability.
As we will see, the framework described in [DG20] is sound and complete, meaning
that exactly solves the language inclusion problem between ω-regular languages, while
not raising false alarms, as they are known in abstract interpretation terminology.

In particular, the idea is to abstract the language L1 with an over approximation
function ρ. As long as ρ satisfies a completeness condition, that intuitively corresponds
to not losing precision while abstracting the language, we show how to use ρ in order
to checking the inclusion between two languages.

The framework to solve the inclusion between ω-regular languages described
in [DG20] is parameterized by a pair of quasiorders ≤1,≤2 on words: as long as
≤1,≤2 satisfy a list of requirements related to computability and completeness, they
can be plugged into the framework in order to check the inclusion between two languages.
As one could imagine, the performance of the algorithm described in [DG20] depends
on the choice of the two quasiorders. In particular, coarser relations lead to algorithms
that converge in less iterations. They also suggest two families of quasiorders that are
suitable for the described framework: the syntactic and the state-based quasiorders.
Our ultimate goal is to put forward a number of relations on words that are based
on the simulation relation on the states of an automaton. We explore an ample mix
of simulation relations, from the well-known direct simulation [DHWT91], up to less
celebrated simulations, as the k-lookahead simulation [CM17]. We will see that the
simulation-based quasiorders on words result in coarser relations than the state-based
quasiorders, while being finer than the syntactic ones, effectively lying in the middle
between the already proposed relations.

In Chapter 2 we formally define the concepts that will be needed in the rest of our
work. We also describe the framework put forward in [DG20] on which we rely in order
to check the inclusion between ω-regular languages; in Chapter 3 we define various
simulation-based quasiorders on words and we prove that they meet the requirements
of the framework, and, finally, in Chapter 4 we give several examples that show the
practical advantages of using the simulation-based quasiorders.



Chapter 2

Background

In this chapter we formally describe the concepts and the background information
needed to understand what follows. In Section 2.1 we give some basic mathematical
background; in Section 2.2 we introduce the concept of formal language and we
characterize some classes of languages in which we are interested in; in Section 2.3 we
present basic notions of order theory ; in Section 2.4 we define a number of simulation
preorders on the states of an automaton and, finally, in Section 2.5 we describe how to
solve the language inclusion problem for certain classes of languages using complete
abstractions.

2.1 Mathematical background
Let X and Y be two sets. We denote by |X| the cardinality of X and by ℘(X) its

powerset. We define ℘f (X)
△
= {S ∈ ℘(X) | |S| <∞}. If X is a subset of some universe

set U then XC denotes the complement of X with respect to U when U is implicitly
given by the context. A partition P of X is a set of non empty subsets of X, called
blocks, that are pairwise disjoint and whose union gives X. If f : X → Y is a function
between sets and S ∈ ℘(X) then f(S)

△
= {f(x) | x ∈ S} denotes its image on a subset

S. A composition of two functions f and g is denoted both by fg and f ◦ g. We define
id : X → X as the identity function, namely id(x)

△
= x. Let f : X → X be a function.

For all n ∈ N we inductively define:

fn △
=

{︄
id if n = 0

f ◦ fn−1 if n > 0

One relation R over X is a subset of X ×X. The composition of two relations
R1,R2 is R1 ◦R2

△
= {(x, z) | ∃(x, y) ∈ R1 ∧ ∃(y, z) ∈ R2}. Let R be a relation on

X.

• R is reflexive if for all x ∈ X,xRx;

• R is transitive if for all x, y, z ∈ X,xRy ∧ yRz =⇒ xRz;

• R is symmetric if for all x, y ∈ X,xRy ⇐⇒ yRx;

• R is antisymmetric if for all x, y ∈ X,xRy ∧ yRx =⇒ x = y.

3



4 CHAPTER 2. BACKGROUND

If R is reflexive, transitive and symmetric we say that R is an equivalence. If R
is reflexive, transitive and antisymmetric we say that R is a partial order. If R is
reflexive and transitive we say that R is a quasiorder, and we will recall this concept
in Section 2.3. We define [x]R

△
= {y ∈ X | xRy ∧ yRx}. The transitive closure of one

relation R on one set X is defined as the smallest relation on X that contains R and
is transitive. Let R1,R2 be two relations. If R1 ⊆ R2 we say that R1 is finer than
R2 and if R2 ⊆ R1 we say that R1 is coarser than R2.

Let k ∈ N and x1, . . . , xk ∈ X. We denote by x⃗ the k-dimensional vector ⟨xi⟩i∈[1,k] ∈
Xk. We denote by (x⃗)i the element xi. In what follows we abuse notations by implicitly
lifting them to vectors. For instance, x⃗ ≤ y⃗

△⇐⇒ ∀i ∈ [1, k], xi ≤ yi. Sometimes we also
implicitly lift the empty set ∅ to a vector, writing ∅ to refer to ∅⃗ △

= ⟨∅⟩i∈[1,k] ∈ ℘(X)k.

2.2 Formal languages
In mathematics, computer science, and linguistics, a formal language consists of

words whose letters are taken from an alphabet Σ and are well-formed according to
a specific set of rules. The alphabet Σ of a formal language consist of symbols that
concatenate into strings of the language. Each string concatenated from symbols of this
alphabet is called a word, and the words that belong to a particular formal language
are sometimes called well-formed words or well-formed formulas. A formal language is
often defined by means of a formal grammar, such as a regular grammar or context-free
grammar, which consists of its formation rules. We now describe these concepts more
formally.

Let Σ be a finite set of symbols. A finite sequence of elements of Σ is called a finite
word. We denote the sequence (a1, a2, . . . , an) by mere juxtaposition:

a1a2 . . . an

The set of words is endowed with the operation of concatenation product, which asso-
ciates two words u = a1a2 . . . an and v = b1b2 . . . bm the word uv = a1a2 . . . anb1b2 . . . bm.
We denote with ϵ the empty word. We denote by Σ∗ the set of words on Σ and by Σ+

the set of nonempty words, that is Σ+ △
= Σ∗ \ {ϵ}. An infinite word on the alphabet Σ

is an infinite sequence of elements of Σ, which we also denote by juxtaposition:

a1a2 . . . an . . .

We denote with Σω the set of infinite words over the alphabet Σ. One formal language,
or simply a language, is a subset of Σ∗ or Σω. Let L be a language, w ∈ Σ∗, we define
the context of w as ctxL(w)

△
= {(x, y) ∈ Σ∗ × Σ∗ | xwy ∈ L}.

In the following sections we describe three classes of languages: regular, context-free
and ω-regular.

2.2.1 Regular languages and finite automata
There are many different ways to defines regular languages. A regular language is

a formal language that can be expressed using a regular expression [HMU13]. The
words of a regular language are sequences of finite length of symbols in the alphabet
Σ . An alternative definition of regular language is that a regular language is the
language accepted by finite automaton (FA). A FA can either be deterministic or
nondeterministic.
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A deterministic finite automaton (DFA) is a tuple A = ⟨Q,Σ, δ, I, F ⟩ where Σ is a
finite alphabet, Q is a finite set of states, I ⊆ Q is the set of initial states, F ⊆ Q is
the set of accepting states, and δ ⊆ Q× Σ×Q is the transition function. Figure 2.1
shows an example of DFA. A nondeterministic finite automaton (NFA) is a tuple
A = ⟨Q,Σ, δ, I, F ⟩ where Σ is a finite alphabet, Q is a finite set of states, I ⊆ Q is the
set of initial states, F ⊆ Q is the set of accepting states, and δ ⊆ Q× Σ×Q is the
transition relation. Figure 2.2 shows an example of NFA. Observe that the difference
between a DFA and a NFA is that in the former δ is a function, while in the latter δ is
a relation.

q0start

q1

q2

a

b

b

c

b

Figure 2.1: Example of a DFA

Let q, q′ ∈ Q and a ∈ Σ. If q′ ∈ δ(q, a) we write that q
a→ q′ and if ∄q′ ∈ δ(q, a)

we write that q
a↛. If w ∈ Σ∗, then q

w
⇝ q′ means that the state q′ is reachable

from q by following the string w. More formally, by induction on the length of w:
(i) if w = ϵ then q

ϵ
⇝ q′ ⇐⇒ q = q′; (ii) if w = av with a ∈ Σ, v ∈ Σ∗ then

q
av
⇝ q′ ⇐⇒ ∃q′′ ∈ δ(q, a), q′′

v
⇝ q′. We define q

uv
⇝
u,q′′

q′
△⇐⇒ ∃q′′ ∈ Q, q

u
⇝ q′′ ∧ q′′

v
⇝ q′.

When q
u
⇝ q′ ∧ q′

v
⇝ q′′ we write q

u
⇝ q′

v
⇝ q′′. We write q

w
↣ q′ to denote the fact

that the state q′ is reachable from q by following the string w, reaching at some point
one final state. More formally, by induction on the length of the word w: (i) if w = ϵ,
then q

ϵ
↣ q′ iff q = q′ and q ∈ F ; (ii) if w = av, then q

av
↣ q′ iff ∃q′′ ∈ Q such that

((q ∈ F ∨ q′′ ∈ F ) ∧ q
a→ q′′ ∧ q′′

v
⇝ q′) or (q

a→ q′′ ∧ q′′
v
↣ q′). The language

accepted by the FA A is L(A) △
= {w ∈ Σ∗ | ∃qi ∈ I, ∃qf ∈ F, qi

w
⇝ qf}. Figure 2.3 shows

an example of an automaton accepting the language a(b∗(ca)∗)∗.
Let S, T ⊆ Q, we define WA

S,T

△
= {w ∈ Σ∗ | ∃p ∈ S, ∃q ∈ T, p

w
⇝ q}. When S = {p}

or T = {q} we slightly abuse the notation writing WA
p,T , WA

S,q or WA
p,q. Let w ∈ Σ∗

and S ⊆ Q, we define ctxA(w)
△
= {(p, q) ∈ Q × Q | p w

⇝ q}, ctxF
A(w)

△
= {(p, q) ∈

Q×Q | ∃pf ∈ F,w1, w2 ∈ Σ∗ : p
w1⇝ pf ∧ pf

w2⇝, w = w1w2}, preAw(S)
△
= {q ∈ Q | w ∈

WA
q,S} and postAw(S)

△
= {q ∈ Q | w ∈WA

S,q}.



6 CHAPTER 2. BACKGROUND

q0start

q1

q2

a

a

b

b

b

Figure 2.2: Example of a NFA

q0start q1

a b

c

Figure 2.3: DFA accepting the language a(b∗(ca)∗)∗

AR △
= ⟨Q,Σ, δR, F, I⟩ is the reverse of A, where q ∈ δR(q′, a) ⇐⇒ q′ ∈ δ(q, a). If

q′ ∈ δR(q, a) we write that q
a→R q′. By induction on the length of w we define what

means q
w
⇝R q′: (i) if w = ϵ then q

ϵ
⇝R q′ ⇐⇒ q = q′; (ii) if w = av with a ∈ Σ,

v ∈ Σ∗ then q
av
⇝R q′ ⇐⇒ ∃q′′ ∈ δR(q, a), q′′

v
⇝R q′. Figure 2.4 shows the reverse of

the DFA in Figure 2.3.

q0 q1start

a b

c

Figure 2.4: Reverse of the DFA in Figure 2.3

Lemma 2.2.1. Let w ∈ Σ∗ and p, q ∈ Q, then:

p
w
⇝ q ⇐⇒ q

wR

⇝R p

Proof. It follows from an induction on |w|. If |w| = 0, then w = ϵ and by the definition
of ⇝, p = q. If |w| > 0, then w = av = ub, wR = vRa = buR for a, b ∈ Σ, v, u ∈ Σ∗
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such that av = ub. If p av
⇝ q, then ∃p′ ∈ Q such that p

a→ p′ and p′
v
⇝ q. For inductive

hypothesis q
vR

⇝R p′, and since p
a→ p′ implies p′

a→R p, q vRa
⇝ R p. If q buR

⇝ R p, then

∃q′ ∈ Q such that q
b→R q′ and q′

uR

⇝R p. For inductive hypothesis p
u
⇝ q′, and since

q
b→R q′ implies q′

b→ q, p ub
⇝ q.

2.2.2 Context-free languages and context-free grammars
In order to define context-free languages we have to introduce the concept of

context-free grammar. A context-free grammar (CFG) is a tuple G = ⟨V,Σ, P ⟩ where
V = {X0, X1, . . . , Xn} is the finite set of variables including the start symbol X0, Σ
is the finite alphabet of terminals and P is is the set of productions Xi → β where
β ∈ (V ∪ Σ)∗. We assume, for simplicity and without loss of generality, that CFGs are
in Chomsky Normal Form (CNF), that is, every production Xi → β ∈ P is such that
β ∈ (V × V) ∪ Σ ∪ {ϵ} and if β = ϵ then i = 0 [Cho59]. We also assume that for all
Xi ∈ V there exists a production Xi → β ∈ P , otherwise Xi can be safely removed from
V. Given two words w,w′ ∈ (V ∪ Σ)∗ we write w → w′ iff there exists u, v ∈ (V ∪ Σ)∗

and X → β such that w = uXv and w′ = uβv. We denote by⇝ the reflexive-transitive
closure of →. The language accepted by a CFG G is L(G) △

= {w ∈ Σ∗ | X0 ⇝ w}.
Figure 2.5 shows an example of CFG generating the language {anbn | n ≥ 0}, while
Figure 2.6 shows a CFG that accepts the same language but is in CNF. The class of
languages accepted by CFGs is called contex-free languages.

X0 → aX0b

X0 → ϵ

Figure 2.5: CFG that accepts the language {anbn | n ≥ 0}

X0 → X2X1

X0 → ϵ

X1 → X0X3

X2 → a

X3 → b

Figure 2.6: CFG in Chomsky Normal Form that accepts the language {anbn | n ≥ 0}

2.2.3 ω-regular languages and Büchi automata
In order to define ω-regular languages we have to introduce the concept of Büchi

automaton (BA). The definition of BA is analogous to the definition of FA, they differ
just on how to accept words. BAs can be deterministic or nondeterministic.

A deterministic Büchi automaton (DBA) is tuple B = ⟨Q,Σ, δ, I, F ⟩ where Σ is a
finite alphabet, Q is a finite set of states, I ⊆ Q is the set of initial states, F ⊆ Q
is the set of accepting states, and δ ⊆ Q × Σ × Q is the transition function. A
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nondeterministic Büchi automaton (NBA) is tuple B = ⟨Q,Σ, δ, I, F ⟩ where Σ is a
finite alphabet, Q is a finite set of states, I ⊆ Q is the set of initial states, F ⊆ Q is
the set of accepting states, and δ ⊆ Q× Σ×Q is the transition relation.

In order to define the language accepted by BAs we have to introduce the concept
of trace. One infinite trace of the automaton B = ⟨Q,Σ, δ, I, F ⟩ on an infinite word
w = a0a1 · · · ∈ Σω starting in a state q0 ∈ Q is an infinite sequence of transitions
π = q0

a0→ q1
a1→ · · · . Similarly, a finite trace on a finite word w = a0a1 . . . an ∈ Σ∗ start-

ing in a state q0 ∈ Q is a finite sequence of transitions π = q0
a0→ q1

a1→ · · · an→ qn+1. A
trace is initial if it starts in an initial state q0 ∈ I, and a finite trace is final if it ends in
an accepting state qf ∈ F . A trace is fair if it is infinite and qi ∈ F for infinitely many i’s.
Differently from FAs, Büchi automata recognize languages of infinite words. In particu-
lar, the language of a BA B is L(B) △

= {w ∈ Σω | B has an initial and fair trace on w}.
Figure 2.7 shows an example of a Büchi automaton that accepts the language aω. An
ω-regular language is a language recognized by a Büchi automaton.

q0start

a

Figure 2.7: Büchi automaton that accepts the language aω

When the distinction between BAs and FAs is important we specify it, otherwise
assume that A is an automaton such that A = ⟨Q,Σ, δ, I, F ⟩. As a convertion, we will
refer to FAs and generic automata as A and to BAs as B.

2.2.4 The language inclusion problem
Deciding whether a formal language contains another one is a fundamental prob-

lem in computer science with diverse applications including automata-based verifica-
tion [Kup18], reasoning for logical theories [Esp17] or type systems [HC14]. Typically,
inclusion problems are computationally intensive.

Let L1, L2 be two languages. The language inclusion problem consists in checking
if L1 ⊆ L2 holds. Whether L1 ⊆ L2 is computable or not, depends on the nature of L1

and L2.
It is well-known that if they are both regular the problem is computable, and many

algorithms have been proposed to check the inclusion [GRV19; DW+06; Abd+10].
This problem is PSPACE-complete [Abd+10]. If L1 is context-free and L2 is regular
the problem is still decidable. In Section 2.5.2 we present the framework put forward
in [GRV19] to check this inclusion.

We are particularly in interested in the language inclusion problem between ω-
regular languages. It is known to be a PSPACE-complete [KV96] problem and becomes
EXPTIME-complete [MMN17] when the “smaller” language is ω-context free. In
Section 2.5.1 we describe the framework for checking the language inclusion between
ω-regular languages proposed in [DG20].

2.3 Order theory
Let D be a set. ⟨D,≤⟩ is a quasiordered set (qoset) when ≤ is a quasiorder (qo)

relation on D, that is, reflexive and transitive. We sometimes refer to quasiorders as
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preorders. A qoset ⟨D,≤⟩ is a partially ordered set (poset) when ≤ is antisymmetric.
The powerset of D is one example of poset. A qoset satisfies the ascending (resp.
descending) chain condition (ACC, resp. DCC) if there is no countably infinite sequence
of distinct elements {xi}i∈N such that, for all i ∈ N, xi ≤ xi+1 (resp. xi+1 ≤ xi). An
antichain in a qoset ⟨D,≤⟩ is a subset X ⊆ D such that any two distinct element in
X are incomparable. We denote the set of antichains of a qoset ⟨D,≤⟩ by AC⟨D,≤⟩

△
=

{X ⊆ D | X is an antichain}. A qoset is called ACC (DCC) when it satisfies the
ACC (DCC). A qoset ⟨D,≤⟩ is a well-quasiordered set (wqoset) when ≤ is a well-
quasiorder (wqo) relation on D, that is, when for every countably infinite sequence
of elements {xi}i∈N there exist i, j ∈ N such that i < j and xi ≤ xj . For every qoset
⟨D,≤⟩, let us define the following binary relation ⊑ on the ℘(D): given X,Y ∈ ℘(D),
X ⊑ Y

△⇐⇒ ∀x ∈ X,∃y ∈ Y, y ≤ x. A minor of a subset X ⊆ D, denoted by ⌊X⌋, is a
subset of X satisfying: (i) X ⊑ ⌊X⌋ and (ii) ⌊X⌋ is an antichain. Let us recall that
every subset of a wqoset ⟨D,≤⟩has at least one minor set, all minor sets are finite and
if ⟨D,≤⟩ is additionally a poset then there exists exactly one minor set.

Let ⟨D,≤⟩ be a qoset. An (upper) closure operator on D, is a function in D → D
that is monotone (i.e. x ≤ y =⇒ ρ(x) ≤ ρ(y)), idempotent (i.e., ρ = ρρ) and
increasing (i.e., x ≤ ρ(x)). The qoset D induces a closure operator ρ≤ defined by

ρ≤(X)
△
= {y ∈ D | ∃x ∈ X,x ≤ y}. We call ρ≤(X) the upward closure of X and if

x ∈ X we abuse the notation and write ρ≤(x) for ρ≤({x}).
Let ⟨D,≤⟩ be a poset. Given two elements x and y in D, we call upper bound of x

and y any element z ∈ D such that x ≤ z and y ≤ z. Likewise, a lower bound z of x
and y satisfies z ≤ x and z ≤ y. Moreover, z is the least upper bound, also called lub or
join, if it is the smallest element grater than both x and y. Such a upper bound does
not necessarily exist but, when it does, it is unique. It is written as x ⊔ y. Likewise,
the unique greatest lower bound of x and y, also called glb or meet, if it exists, is the
greatest element smaller than x and y, and it is denoted as x ⊓ y. As ⊔ and ⊓ are
associative operators, we will employ also the notations ⊔ A and ⊓ A to compute lubs
an glbs on arbitrary (possibly infinite) sets A of elements. We denote respectively as
⊥ (called bottom) and ⊤ (called top) the least element and the greatest element in the
poset, if they exist.

A chain C ⊆ D in a poset ⟨D,≤⟩ is a subset C of D such that is totally ordered:
∀x, y ∈ C : (x ≤ y) ∨ (y ≤ x). A complete partial order (CPO) is a poset such that
every chain has a lub.

A lattice ⟨D,≤,⊔,⊓⟩ is a poset such that ∀x, y,∈ D : x ⊔ y and x ⊓ y exist. A
join-semilattice ⟨D,≤,⊔,⊥⟩ is a poset that has the lub of all its arbitrary nonempty
finite subsets. A complete lattice ⟨D,≤,⊔,⊓,⊥,⊤⟩ is a poset that has the lub of all its
arbitrary (possibly empty) subsets.

2.3.1 Fixpoints

Let ⟨D,≤⟩ be a poset, f : D → D a function and x ∈ D.

• x is a fixpoint of f if f(x) = x. We denote as fp(f)
△
= {x ∈ D | f(x) = x} the

set of fixpoints of f ;

• x is a prefixpoint of f is x ≤ f(x);

• x is a postfixpoint of f is f(x) ≤ x;
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• lfpx f
△
= min{y ∈ fp(f) | x ≤ y}, if it exists, is the least fixpoint of f greater

than x;

• lfp f
△
= lfp⊥f , is it exists, is the least fixpoint of f ;

• gfpx f
△
= max{y ∈ fp(f) | y ≤ x}, if it exists, is the greatest fixpoint of f greater

than x;

• gfp f
△
= gfp⊤f , is it exists, is the greatest fixpoint of f .

In order to guarantee the existence of fixpoints we need some extra hypotheses on
f and ⟨D,≤⟩. A function f : ⟨D1,≤1⟩ → ⟨D2,≤2⟩ between two posets is monotonic
if ∀x, y ∈ D1 : x ≤1 y =⇒ f(x) ≤2 f(y). Monotonicity is related to the existence of
fixpoints, as the following Theorem states [Tar+55].

Theorem 2.3.1 (Tarski’s Theorem). If f : D → D is a monotonic operator is
a complete lattice ⟨D,≤,⊔,⊓,⊥,⊤⟩, then the set of fixpoints fp(p) is a non-empty
complete lattice. In particular, lfp f exists. Furthermore, lfp f = ⊓{x ∈ D | f(x) ≤ x}.

A function f : ⟨D1,≤1,⊔1⟩ → ⟨D2,≤2,⊔2⟩ between two CPOs is continuous if
for every chain C ⊆ D1, {f(c) | c ∈ C} is also a chain and the limits coincide:
f(⊔1 C) = ⊔2{f(c) | c ∈ C}. Another useful fixpoint theorem, found, e.g., in [CC77],
is inspired by Kleene[Kle+52]’s star construction:

Theorem 2.3.2 (Kleene’s Theorem). If f : D → D is a continuous function in a
CPO ⟨D,≤,⊔,⊤⟩, then lfp f exists. Moreover, lfp f = ⊔{f i(⊥) | i ∈ N}.

This theorem requires stronger hypotheses on the function f than Taski’s Theorem,
but it does not require a complete lattice, only a CPO. More interestingly, the iteration
scheme makes the theorem constructive: one can imagine the process of computing
iterations one by one from ⊥. Due to Kleene’s Theorem, the following procedure
provides the possibly infinite sequence of so-called Kleene iterates of the function f
starting from the basis x.

Kleene(f,x)
△
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
y ← x;

whilef(y) ̸= y do
y ← f(y);

return y

When D is an ACC CPO and f is monotonic, Kleene(f,x) terminates and returns
the least fixpoint of the function f which is greater than or equal to x. Moreover,
under the same hypotheses Kleene(f,⊥) returns the lfp of the function f .

2.3.2 Quasiorders on words
A quasiorder ≤ on Σ∗ is left-monotonic (right-monotonic) if ∀y, x1, x2 ∈ Σ∗, x1 ≤

x2 =⇒ yx1 ≤ yx2 (x1y ≤ x2y). Also, ≤ is called monotonic if it is both left and
right-monotonic.

Definition 2.3.3 (L-consistency). Let L ∈ ℘(Σ∗) and ≤L be a quasiorder on Σ∗. Then,
≤L is called left (resp. right) L−consistent if and only if: (i) ≤L ∩ (L× ¬L) = ∅; (ii)
≤L is left (resp.right) monotonic. Furthermore, ≤L is called L−consistent when it is
both left and right L−consistent.
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We see in Section 2.5.2 that if one qo monotonic and L-consistent, then it can be
used in the framework described in [GRV19] to solve the language inclusion problem
L1 ⊆ L2 where L1 is context-free and L2 is regular.

We present some wqos defined in [GRV19]. Observe that ⪯di is the direct simulation
relation on states, while ⪯r is the reverse simulation on states (see Section 2.4). Let
L ∈ ℘(Σ∗), A be an automaton, u, v ∈ Σ∗:

u ≦L v
△⇐⇒ ctxL(u) ⊆ ctxL(v)

u ≤1
A v

△⇐⇒ ctxA(u) ⊆ ctxA(v)

u ⊑r
A v

△⇐⇒ ∀q ∈ postAu (I) ∃p ∈ postAv (I) such that q ⪯di p

u ⊑l
A v

△⇐⇒ ∀q ∈ preAu (F ) ∃p ∈ preAv (F ) such that q ⪯r p

The first is known as the Myhill quasiorder, while the second is a state-based quasiorder.
If A is a FA, they are both decidable monotonic wqos [GRV19] and ≦A is L−consistent.
Furthermore, also ≤1

A is L(A)-consistent. ⊑r
A is right-monotonic and ⊑l

A is left-
monotonic. If A is a FA they are respectively right L(A)-consistent and left L(A)-
consistent. They are both decidable wqos as well.

Some of these qos will be referenced frequently, in particular ≤1
A will be used in the

framework for solving the language inclusion problem for ω-regular languages described
in Section 2.5.1. Furthermore, ⊑r

A is the first right-monotonic simulation-based qo
that we present. In Chapter 3 we will generalize ⊑r

A in order to obtain a number of
different right-monotonic simulation-based qos.

2.4 Simulation quasiorders on states
We assume that the automata are forward and backward complete (or simply

complete), i.e., for any state p ∈ Q and symbol a ∈ Σ, there exist states q0, q1 ∈ Q

such that q0
a→ p

a→ q1. In our examples not every automaton is backward and
forward complete, because otherwise they would be too complicated. Observe that
in the examples we can consider incomplete automata without loss of generality: as
Proposition 2.4.1 and 2.4.2 state, every automaton can be converted into an equivalent
complete one.

Proposition 2.4.1. Let A = ⟨Q,Σ, δ, I, F ⟩ be a FA. There exists a backward and
forward complete FA A′ such that L(A) = L(A′).

Proof. We define A′ in terms of the components Q, δ, I, F of A:

• Q′ = Q ∪ {b, f}, where b and f are two new states;

• δ′ = δ ∪ {(b, a, q) | ∄(q′, a, q) ∈ δ} ∪ {(b, a, b) | a ∈ Σ} ∪ {(q, a, f) | ∄(q, a, q′) ∈
δ} ∪ {(f, a, f) | a ∈ Σ};

• I ′ = I;

• F ′ = F .

The runs of A′ are a superset of those of A since we have added states and transitions.
Furthermore, on any input word w the accepting runs of A and A′ correspond, because
any run that reaches f stays in f , and since f /∈ F ′, such a run can’t reach a final
state.
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Proposition 2.4.2. Let B = ⟨Q,Σ, δ, I, F ⟩ be a BA. There exists a backward and
forward complete BA B′ such that L(B) = L(B′).

Proof. We define B′ in terms of the components Q, δ, I, F of B:

• Q′ = Q ∪ {b, f}, where b and f are two new states;

• δ′ = δ ∪ {(b, a, q) | ∄(q′, a, q) ∈ δ} ∪ {(b, a, b) | a ∈ Σ} ∪ {(q, a, f) | ∄(q, a, q′) ∈
δ} ∪ {(f, a, f) | a ∈ Σ};

• I ′ = I;

• F ′ = F .

The runs of B′ are a superset of those of B since we have added states and transitions.
Furthermore, on any infinite input word w the accepting runs of B and B′ correspond,
because any run that reaches f stays in f , and since f /∈ F ′, such a run is not fair.

In the following example we show how to transform one incomplete FA in a complete
one.

q0start q1 q2
a

b

c

Figure 2.8: Incomplete FA accepting the language ab(cb)∗

q0start q1 q2

b

f

a

b

c

a, b, c
b

a, c

a, b, c

b, c
a, c

a, b

a, b, c

Figure 2.9: Complete FA accepting the language ab(cb)∗
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Example 2.4.3. Let A be the FA in Figure 2.8. If we add states b and f and the
transitions described in Proposition 2.4.1 we obtain the FA A′ in Figure 2.9. It is easy
to check that L(A) = L(A′).

The simulation relation between two states p0 and q0 can be described in terms
of a game between two players, Spoiler (he) and Duplicator (she), where the latter
wants to prove that q0 can step-wise mimic any behaviour of p0, and the former
wants to disprove it. The game starts in the initial configuration (p0, q0). Inductively,
given a game configuration (pi, qi) at the i-th round of the game, Spoiler chooses a
symbol ai ∈ Σ and a transition pi

ai→ pi+1. Then, Duplicator responds by choosing a
matching transition qi

ai→ qi+1, and the next configuration is (pi+1, qi+1). The game
goes on forever, and the two players build two infinite traces π0 = p0

a0→ p1
a1→ · · · and

π1 = q0
a0→ q1

a1→ · · · . The winning condition for Duplicator is a predicate on the two
traces π0, π1 and it depends on the type of simulation. For our purposes, we firstly
consider direct[DHWT91], delayed[EWS05] and fair[HHK95] simulations. Let k ≥ 0,
x ∈ {di, de, f}. Duplicator wins the play if Cx(π0, π1) holds, where:

Cdi(π0, π1)⇐⇒ ∀(i ≥ 0) · pi ∈ F =⇒ qi ∈ F

Cde(π0, π1)⇐⇒ ∀(i ≥ 0) · pi ∈ F =⇒ ∃(j ≥ i) · qj ∈ F

Cf (π0, π1)⇐⇒ if π0 is fair, then π1 is fair

We define x-simulation relation ⪯x ⊆ Q×Q, for x ∈ {di, de, f}, by stipulating that
p0 ⪯x q0 holds if Duplicator has a winning strategy in the x-simulation game, starting
from configuration (p0, q0). Thus, ⪯di ⊆ ⪯de ⊆ ⪯f . Furthermore ⪯di,⪯de and ⪯f are
PTIME computable quasiroders [DHWT91; EWS05; HHK95; HKR02].

Example 2.4.4. In this example we show the difference between the delayed and
the fair simulation. Consider the family of automata An in Figure 2.10 (taken
from [EWS05]). Observe that while q0 ⪯f q1, q0 ⪯̸de q1. We are playing the de-
layed simulation game: Spoiler starts at q0, Duplicator at q1. Spoiler plays an infinite
word not accepted by An, e.g. aω2 . Since An is deterministic (and complete), Duplicator
has no choice but to self loop on her starting state. Spoiler visited one accepting state
but at no point in future Duplicator will match that visit.

We also consider the reverse and the backward simulation, that rely on the reverse
transition →R. Let y ∈ {r, b}, ⪯y simulation is defined like ordinary simulation except
that transitions are taken backwards: from configuration (pi, qi), Spoiler selects a
transition pi+1

ai→ pi, Duplicator replies with a transition qi+1
ai→ qi, and the next

configuration is (pi+1, qi+1). Let π0 = · · · a1→ p1
a0→ p0 and π1 = · · · a1→ q1

a0→ q0 be the
infinite backward traces built in this way. Duplicator wins the play if Cy(π0, π1) holds,
where:

Cr(π0, π1)⇐⇒ ∀(i ≥ 0) · pi ∈ I =⇒ qi ∈ I

Cb(π0, π1)⇐⇒ ∀(i ≥ 0) · pi ∈ I =⇒ qi ∈ I and pi ∈ F =⇒ qi ∈ F

Then, p0 ⪯y q0 holds if Duplicator has a winning strategy in the above described
game starting from (p0, q0) with winning condition Cy. It holds that ⪯b ⊆ ⪯r.
Furthermore, ⪯b and ⪯r are efficiently computable quasiorders [SB00].

We also consider the k-lookahead simulation [CM17]. Intuitively, we put the
lookahead under Duplicator’s control, who can choose at each round and depending on
Spoiler’s move how much lookahead she needs (up to k). Formally, configurations are
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q0start

qn−1 q1

q2

q3

. . .

Σ

Σ \ {a1}

a1

Σ \ {a2}

a2

Σ \ {a3}

a3

{an−2}

Σ \ {an−1}

an−1

Figure 2.10: Family of automata An

pairs (pi, qi) of states. From configuration (pi, qi), one round of the game is played as
follows.

• Spoiler chooses a sequence of k consecutive transitions pi
ai→ pi+1

ai+1→ · · · ai+k−1→
pi+k;

• Duplicator chooses a degree of lookahead m such that 1 ≤ m ≤ k;

• Duplicator responds with a sequence of m transitions qi
ai→ qi+1

ai+1→ · · · ai+m−1→
qi+m.

The remaining k −m moves of Spoiler pi+m
ai+m→ pi+m+1

ai+m+1→ · · · ai+k−1→ pi+m are
forgotten, and the next configuration is (pi+m, qi+m); in particular, in the next round
Spoiler can choose a different attack from pi+m. In this way, the players build as
usual two infinite traces π0 from p0 and π1 from q0. For any acceptance condition
x ∈ {di, de, f}, Duplicator wins this play if Cx(π0, π1) holds. We define the k-lookahead
x-simulation ⊑k−x ⊆ Q ×Q, by stipulating that p0 ⊑k−x q0 holds if Duplicator has
a winning strategy in the above game, starting from configuration (p0, q0). Since for
k > 1 ⊑k−x is not transitive (see Example 2.4.5), we consider instead its transitive
clouse (see Section 2.3), and we denote it by ⪯k−x. Even a moderate lookahead often
yields much coarser relation than normal simulation quasiorder [CM17].

Example 2.4.5. Let A be the automaton in Figure 2.11 (taken from [CM17]). We
are playing the 2-lookahead game: Spoiler starts from q0, while Duplicator from q1. If
Spoiler plays q0

a→ q0
a→ q0, Duplicator can reply with q1

a→ q2
a→ q1. The other cases

are similar, so that q0 ⊑2−x q1. Consider another configuration: Spoiler starts from q1
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q0 q1

q2 q3

q4

q5 q6

a, b a, b

a b

a, b a, b

a b

a

b

a, b

Figure 2.11: A k-lookahead simulation example.

and Duplicator from q4. If Spoiler goes to q2 or q3, then Duplicator goes to q5 or q6,
respectively. If Spoiler plays q2

a→ q1
a→ q2, Duplicator does q5

a→ q5
a→ q5. If Spoiler

plays q2
a→ q1

b→ q2, then Duplicator responds with q5
a→ q6

b→ q5. The other cases are
similar, so that q1 ⊑2−x q4. Consider the last configuration: Spoiler starts from q0
and Duplicator from q4. If Spoiler plays q0

a→ q0
a→ q0, Duplicator can play q4

a→ q5,
q4

a→ q6, q4
a→ q5

a→ q5 or q4
a→ q5

a→ q6. In the first and the third case Spoiler plays
q0

b→ q0 and Duplicator loses, in the second and in the fourth q0
a→ q0. To conclude,

q0 ⊑2−x q4 doesn’t hold. This example shows that ⊑2−x is not transitive, so that in
general, for k > 1, ⊑k−x is not transitive.

The last relations that we consider are the trace inclusions, which are obtained
through the following modification of the simulation game. In a simulation game, the
players build two paths π0, π1 by choosing single transitions in an alternating fashion.
That is, Duplicator moves by a single transition by knowing only the next single
transition chosen by Spoiler. We can obtain coarser relations by allowing Duplicator
a certain amount of lookahead on Spoiler’s chosen transitions. In the extremal case
of infinite lookahead, i.e., where Spoiler has to reveal his entire path in advance, we
obtain trace inclusions. Analogously to simulations, we define direct, delayed, and
fair trace inclusion, as binary relations on Q. Formally, for x ∈ {di, de, f}, x-trace
inclusion holds between p and q, written p ⪯t−x q if, for every word w = a1a2 · · · ∈ Σω,
and for every infinite w-trace π0 = p0

a1→ p1
a2→ · · · starting at p0 = p, there exists an

infinite w-trace π1 = q0
a1→ q1

a2→ · · · starting at q0 = q such that Cx(π0, π1) holds.
Like simulations, trace inclusions are preorders. Clearly, direct trace inclusion

⪯t−di is a subset of delayed trace inclusion ⪯t−de, which, in turn, is a subset of
fair trace inclusion ⪯t−f . Moreover, since Duplicator has more power in the trace
inclusion game than in the corresponding simulation game, trace inclusions subsume
the corresponding simulation. This is true also for the corresponding k-lookahead
simulation. Furthermore, trace inclusions are PSPACE-computable quasiorders [Ete02;
CM18].

2.4.1 Computing simulations

Here we describe some of the leading ideas than have been proposed to compute
simulation quasiorders. At the end of this section we also give a reference to some
tools to compute the simulations.

Direct simulation. In what follows for simplicity we will refer to the direct
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simulation just as simulation. To compute the simulation ⪯di the algorithm that has
mostly influenced the literature is that described in [HHK95]. It runs in O(|Q| · | ⪯di |)
time and uses O(|Q|2 · log(|Q|)) space. There are many known algorithms that improve
the time and space complexity of [HHK95], for example [BG03], [RT07] and [CRT11].
Here we present the leading ideas of the approach taken in [Céc17], since it is the
one with the best published time and space complexities. Observe that since ⪯di is
a quasiorder, it can be efficiently represented as a partition-relation pair (P,R) with
P a partition of the states Q, whose blocks are classes of the simulation equivalence
relation and with R ⊆ P × P a quasiorder over the blocks of P [Céc17]. The first
observation is that a relation S is a simulation if:

S ◦ δR ⊆ δR ◦S

This is an alternative characterization that helps us design efficient algorithms to
compute the simulation. In particular, if a relation R is not a simulation we have
R ◦ δR ⊈ δR ◦R. This implies the existence of a relation Remove such that R ◦ δR ⊆
(δR ◦R) ∪Remove. Many of the previously cited works rely on this equation in order
to compute the simulation preorder. In the described paper they take advantage of the
equation in a different way: when R is not a simulation, it is possible to reduce the
problem of finding the coarsest simulation inside R to the case where there is a relation
NotRel such that R ◦ δR ⊆ δR ◦ (R ∪NotRel). Let us denote U

△
= R ∪NotRel. We

will say that R is U -stable since we have:

R ◦ δR ⊆ δR ◦U

Consider Figure 2.12 (taken from [Céc17]) and the transition c→ b. The quasiorder R

R(c)
R(b)

U (b)

c

d

b
V (c)

R(b)

U (b)

c

d

b

Figure 2.12: R is U -stable and V , obtained after a split of blocks of R and refinement of
R, is R-stable

is assumed to be U -stable and we want to find the coarsest simulation included in R.
Observe that since R is a quasiorder the set R(c) is a union of blocks of R. A state
d in R(c) which doesn’t have an outgoing transition to R(b) belongs to δR ◦ U (b),
but cannot simulate c. In order to compute the coarsest simulation included in R we
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can remove d from R(c). To be efficient we want to manage blocks of states, rather
than individual ones. Then, the first step is a split step, in which we split the blocks of
R in two groups: the ones that are are completely included in δR ◦R(b) and hence
have a chance to simulate c, and ones that are completely outside δR ◦ R(b) that
then cannot simulate c. Let P be the equivalence relation associated to the resulting
partition. Since P is an equivalence, for each block of the partition that has one
outgoing transition to δR ◦ (U \R)(b) it is sufficient to test only for one element of
the block if it is included in δR ◦ R(b). For each block E we call this element the
representative of E and we denote it by E.rep. To perform the test in constant time
we manage a counter that at first counts the number of transitions from E.rep to
U (b) = U ([b]P). Then, we get the following equivalences: there is no transition from
E to R(b) iff there is no transition from E.rep to R(b) iff this counter is null. We can
safely remove from R(c) those blocks of δR ◦ (U \R)(b) which do not have an outgoing
transition to R(b). We call this step the refinement step. After performing it R(c) has
been reduced to V (c). Doing these split and refinement steps for all transitions from c
to b results in the relation V that is a R-stable quasiorder.

In summary, from an initial preorder we build a strictly decreasing sequence of
preorders {Ri}i≥0 such that Ri+1 is Ri-stable and contains all the simulations included
in Ri. We observe that all the relations are finite and hence this sequence has a limit
that is reached after a finite number of steps: and we call this limit Rsim. We have
that Rsim is Rsim-stable. Therefore, we observe that Rsim is a simulation and by
construction contains all simulations included in the initial quasiorder, hence is the
coarsest one and exactly corresponds to ⪯di. We denote by P⪯di the partition of
Q induced by ⪯di. The time complexity of the algorithm proposed in [Céc17] is
O(|P⪯di | · |δ|), while it uses O(|P⪯di |2 · log(|P⪯di |) + |Q| · log(|Q|)) space.

Delayed and fair simulation. Also for the fair and the delayed simulations a
wide variety of algorithms have been proposed [CM17; HKR02]. Here we briefly discuss
approach taken in [EWS05]. The first step is to define a parity game graph GB on one
Büchi automaton B such that the winning vertices in GB for Even (one of the two
players) in the corresponding parity game determine precisely the pairs of states (q, q′)
of B where q′ simulates q.

A parity game graph G = ⟨V0, V1, E, p⟩ has two disjoint sets of vertices, V0 and V1

whose union is denoted by V . There is an edge set E ⊆ V ×V , and p : V → {0, . . . , d−1}
is a mapping that assigns a priority to each vertex. A parity game on G, starting
at vertex v0 ∈ V , is denoted by P (G, v0), and is played by two players, Even and
Odd. The play starts by placing a pebble on vertex v0. Thereafter, the pebble is
moved according to the following rule: with the pebble currently on a vertex vi, and
vi ∈ V0(V1), Even (Odd, respectively) plays and moves the pebble to a neighbour vi+1,
that is, such that (vi, vi+1) ∈ E.

If ever the above rule cannot be applied, i.e., someone can’t move because there are
no outgoing edges, the game ends, and the player who cannot move loses. Otherwise,
the game goes on forever and defines a path π = v0v1v2 in G, called a play of the game.
The winner of the play is determined as follows. Let kπ be the minimum priority that
occurs infinitely often in the play π, i.e., so for infinitely many i, p(vi) = kπ and kπ is
the least number with this property. Even wins if kπ is even, whereas Odd wins if kπ
is odd.

We can now show how to build the parity game graph Gf
B for the fair simulation.

We define Gf
B

△
= ⟨V f

0 , V f
1 , Ef

B, p
f
B⟩, where:

V f
0

△
= {v(q,q′,a) | q, q′ ∈ Q ∧ ∃q′′ : q ∈ δ(q′′, a)}



18 CHAPTER 2. BACKGROUND

V f
1

△
= {v(q,q′) | q, q′ ∈ Q}

Ef
B

△
= {(v(q1,q′1,a), v(q1,q2)) | q

′
2 ∈ δ(q′1, a)} ∪ {(v(q1,q′1), v(q2,q′1,a)) | q2 ∈ δ(q1, a)}

pfB(v) =

⎧⎪⎨⎪⎩
0 if v = v(q,q′) and q′ ∈ F

1 if v = v(q,q′) and q ∈ F, and q′ /∈ F

2 otherwise

We show that the defined parity game mimics the fair simulation game. Here
Odd takes the role of Spoiler, while Even takes the role of Duplicator. When in the
game the current position is node v(q,q′), this corresponds to the situation in which is
Spoiler’s turn to move, while v(q,q′,a) denotes the situation in which is Duplicator’s
turn to match Spoiler’s play, that played a. The priority function is defined in such
a way that every time Duplicator visits a final state, the priority function returns 0.
It returns 1 only if Spoiler visits a final state, but Duplicator does not. In all other
cases, 2 is returned. That is, Spoiler wins iff he visits an accept state infinitely often
but Duplicator does not. It turns out that for every pair of states q, q′ ∈ Q, q ⪯f q′ iff
Even has a winning strategy in P (Gf

B, v(q,q′)).

Similarly, it is possible to define the parity game graph Gde
B

△
= ⟨V de

0 , V de
1 , Ede

B , pdeB ⟩
for the delayed simulation, where:

V de
0

△
= {v(b,q,q′,a) | q, q′ ∈ Q ∧ b ∈ {0, 1} ∧ ∃q′′ : q ∈ δ(q′′, a)}

V de
1

△
= {v(b,q,q′) | q, q′ ∈ Q ∧ b ∈ {0, 1} ∧ (q′ ∈ F =⇒ b = 0)}

Ede
B

△
= {(v(b,q1,q′1,a), v(b,q1,q′2)) | q

′
2 ∈ δ(q′1, a) ∧ q′2 /∈ F} ∪

{(v(b,q1,q′1,a), v(0,q1,q′2)) | q
′
2 ∈ δ(q′1, a) ∧ q′2 ∈ F} ∪

{(v(b,q1,q′1), v(b,q2,q′1,a)) | q2 ∈ δ(q1, a) ∧ q2 /∈ F} ∪
{(v(b,q1,q′1), v(1,q2,q′1,a)) | q2 ∈ δ(q1, a) ∧ q2 ∈ F}

pdeB (v) =

{︄
b if v = v(b,q,q′)

2 if v ∈ V de
B

When the extra bit b is equal to 1, this corresponds to the situation in which Spoiler
encountered a final state that has not yet matched by Duplicator, while if b is equal to
0 she matched Spoiler’s final states. The priority function assigns priority 1 to only
those vertices in V1 that signify that an unmatched final state has been visited by
Spoiler. The priority function makes sure that that the smallest number occurring
infinitely many often is 1 iff from some point onwards the bit in the first component is
1. Now observe that this bit is 1 iff a final state has been visited by Spoiler but not yet
matched by Duplicator. In this way the winning condition of the delayed simulation
game is transferred to the parity game. Similarly to the fair simulation parity game, it
turns out that for each pair of states q, q′ ∈ Q, q ⪯de q′ iff Even has a winning strategy
in P (Gde

B , v(q,q′)). We precise that in [EWS05] they also define the direct simulation
parity game.

We now describe the algorithm put forward in [Jur00] that solves parity games.
Later, it has been improved in [EWS05]. It uses progress measures [Kla94; Wal00] to
compute the set of vertices in a parity game from which Even has a winning strategy,
that in our case will correspond the pairs of states in the fair or delayed simulation
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relation. Let G be a parity game graph with n′ its number of vertices and m′ its
number of edges. For simulations we only need three priorities, but since the algorithm
is more general we will assume p : V → {0, . . . , d− 1}.

Let [n] = {0, . . . , n − 1} and ni = |p−1(i)|. We assign to each vertex a progress
measure from M∞

G

△
= MG ∪ {∞}, where

MG
△
=

{︄
[1]× [n1 + 1]× [1]× [n3 + 1]× · · · × [1]× [nd−11] if d is even
[1]× [n1 + 1]× [1]× [n3 + 1]× · · · × [1]× [nd−21] if d is odd

That is, the progress measure is either ∞ or a length d vector which at even index
positions is 0, and at odd index positions i ranges over {0, . . . , ni}. Initially, every
vertex is assigned 0, the all-zero vector. The measures are repeatedly “incremented” in
a certain fashion until a fixed point is reached. The increment operation represents
the heart of the algorithm. For i < d and x ∈ M∞

G we define ⟨x⟩i as follows. For
x = (l0, . . . , ld−1), ⟨x⟩i = (l0, . . . , li, 0, 0, . . . , 0). If x =∞, then ⟨∞⟩i =∞. We define
a lexicographic total order on M∞

G , denoted >. Here, index 0 is the most significant
position, and ∞ is greater than all other vectors. In addition, for d-vectors x and y,
we write x >i y iff ⟨x⟩i > ⟨y⟩i according to the above ordering. Observe that x > y iff
x >d−1 y. We now can define the increment operation on a progress measure: for each
i ∈ [d], let

incri(x)
△
=

⎧⎪⎨⎪⎩
⟨x⟩i if i is even, x ̸=∞
min{y ∈M∞

G | y >i x} if i is odd, x ̸=∞
∞ if x =∞

We observe that incri is monotone with respect to the ordering <. When v ∈ V we
abuse notation and write ⟨x⟩v and incrv(x) for ⟨x⟩p(v) and incrp(v) respectively. For
every assignment ρ : V →M∞

G of progress measures to the vertices of a game graph,
and for v ∈ V , let

best-nghb-ms(ρ, v)
△
=

{︄
⟨min(⟨ρ(w) | (v, w) ∈ E⟩)⟩v if v ∈ V0

⟨max(⟨ρ(w) | (v, w) ∈ E⟩)⟩v if v ∈ V1

best-nghb-ms stand for best neighbour of v with respect to the measure we defined.
We also define a lifting operator that given an assignment ρ and v ∈ V , gives a new
assignment. First, define:

update(ρ, v)
△
= incrv(best-nghb-ms(ρ, v))

The lifted assignment, lift(ρ, v) : V → D, is then defined as follows:

lift(ρ, v)(u)
△
=

{︄
update(ρ, v) if u = v

ρ(u) otherwise

Then, we can finally present the algorithm described in [Jur00]. First, for each v ∈ V
we assign to ρ(v) the value 0. Then, while there exists a v such that update(ρ, v) ̸= ρ(v),
assign to ρ the value lift(ρ, v). Let G be a parity game. In [Jur00] they prove that
Even has a winning strategy from precisely the vertices v such that, after running the
lifting algorithm, ρ(v) <∞.
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In [EWS05] they present a more efficient version of the lifting algorithm that
maintains a set L of pending vertices v whose measure needs to be considered for
lifting, because a successor has recently been updated resulting in a requirement
to update ρ(v). The also maintain arrays B and C that store, for each vertex v,
the value best-nghb-ms(ρ, v) and the number of successors u of v with ⟨ρ(u)⟩v =
best-nghb-ms(ρ, v). They show that the efficient implementation runs in O(m′|M∞

G |d)
time and uses O(d′m) space. Going back to the original problem, that is computing the
fair and the delayed simulation, in [EWS05] they show that it is possible to compute
the quasiorders in O(|δ||Q|3) time and O(|δ||Q|) space.

As a final note, we point out that there are many tools to compute various simula-
tions, for example RABIT [CM] is a platform that can check the language inclusion
between two Büchi automata that heavily relies on simulation relations [Abd+11].
Oink [Dij18] is a modern tool that allows to solve parity games. In particular, it aims to
provide high-performance implementations of state-of-the-art algorithms representing
different approaches to solving parity games. Since we showed that simulations can be
characterized as parity games, Oink can be used to efficiently compute them.

2.5 Solving the language inclusion problem with com-
plete abstractions

In this section we first give an informal introduction of the main ideas on how
to solve the language inclusion using complete abstractions for regular languages; in
Section 2.5.1 we describe a framework for solving the language inclusion problem for
ω-regular languages and finally in Section 2.5.2 we describe a framework for solving
the language inclusion problem between context-free and regular languages.

We now give a glimpse of the leading ideas that exploit abstract interpretation
techniques to design algorithms to solve the inclusion between two regular languages.
For a formal description refer to [GRV19]. We remark that the reader will find the
same concepts readapted in the following sections.

Let L1, L2 be two regular languages: we want to determine whether L1 ⊆ L2 holds
or not. In order to do this we rely on one upper closure operator ρ (see Section 2.3).
Intuitively, we use ρ to abstract the language L1. In fact, ρ(L1) is an over approximation
of L1. Assume that ρ(L2) = L2: we observe that in this case L1 ⊆ L2 ⇐⇒ ρ(L1) ⊆ L2.

Let A = ⟨Q,Σ, δ, I, F ⟩ be one FA such that L(A) = L1. It is well-known (and
we will return on one similar concept in Section 2.5.1) that the language recognized
by A can be characterized as follows: L(A) equals the union of the component
languages of the vector lfp(λX⃗.ϵF⃗ ∪PreA(X⃗)) indexed by the initial states in I, where
PreA : ℘(Σ∗)|Q| → ℘(Σ∗)|Q| is defined by PreA(X⃗)

△
= ⟨

⋃︁
a∈Σ,q

a→q′
aXq′⟩q∈Q, ϵF⃗ △

=

⟨{ϵ | q ∈ F}⟩q∈Q ∈ ℘(Σ∗)|Q|. In Section 2.5.1 we give an alternative characterization of
the language recognized by an automaton which is based on a symmetric function called
PostA. If ρ is complete for PreA (i.e. ρ ◦ PreA ◦ ρ = ρ ◦ PreA), we can characterize
ρ(L1) as the union of the component languages of the vector lfp(λX⃗.ρ(ϵF⃗ ∪PreA(X⃗)))
indexed by initial states in I. Intuitively, completeness models an ideal situation where
no loss of precision is accumulated in the computations of ρ ◦ PreA when its concrete
input objects are approximated by ρ. Then, the requirements for ρ are:

1. ρ(L2) = L2;

2. ρ complete for PreA.
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L2

ρ(L1)

L1

Figure 2.13: Solving the language inclusion using one abstraction ρ

We remark that given a qoset ⟨D,≤⟩, we defined the upper closure operator on
D induced by ≤ as ρ≤(X)

△
= {y ∈ D | ∃x ∈ X,x ≤ y}. Let ≤ be a quasiorder on Σ∗.

It turns out that if ≤ is a left L2-consistent qo, then ρ≤ meets the previously stated
requirements. Then, if this holds, we have:

L1 ⊆ L2 ⇐⇒ ρ≤(L1) ⊆ L2

We denote by min≤(X) the minor set induced by ≤. The key observation is that since
minor sets are finite, min≤(L1) provides a compact representation of ρ≤(L1): it holds
that ρ≤(L1) ⊆ L2 ⇐⇒ ∀w ∈ min≤(L1), w ∈ L2, so that:

L1 ⊆ L2 ⇐⇒ ∀w ∈ min≤(L1), w ∈ L2

•

Σ∗

•

•

L2

ρ(L1)

min≤(L1)

Figure 2.14: Representation of L2, ρ(L1) and min≤(L1) in the qoset ⟨Σ∗,≤⟩

The final remark is that it is possible to compute min≤(L1) by using the Kleene

procedure to compute lfp(λX⃗.min≤(ϵ
F⃗ ∪PreA(X⃗))). Exploiting complete abstractions
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we have shown how to solve the language inclusion problem: no false alarms will be
raised.

This informally summarizes the main ideas behind solving the language inclusion for
regular languages using complete abstractions. These concepts have been generalized
and adapted to solve similar problems, namely checking the inclusion between ω-regular
languages and whether the language of a CFG is contained in the one generated by a
FA. In what follows, we describe more formally how these inclusions are decided.

2.5.1 Checking the inclusion between ω-regular languages
Let B1,B2 be two Büchi automata. To solve the language inclusion problem,

namely whether L(B1) ⊆ L(B2) holds or not, numerous algorithms have been pro-
posed [Abd+11; CM17]. In this section we’re going to describe the framework put
forward by [DG20], which relies on abstract interpretation techniques.

One word w ∈ Σω is ultimately periodic iff w = uvω for some u ∈ Σ∗, v ∈ Σ+. For
L ⊆ Σω, UP (L) denotes its subset of ultimately periodic words. Let L1, L2 be two
ω-regular languages [CNP93]:

L1 ⊆ L2 ⇐⇒ UP (L1) ⊆ UP (L2)

We can represent UP (L) by IL
△
= {(u, v) ∈ Σ∗ × Σ+ | uvω ∈ L}, so that:

UP (L1) ⊆ UP (L2)⇐⇒ IL1 ⊆ IL2

Now we abstract IL1
using a wqo ⪯ on Σ∗ × Σ+ such that ρ⪯(IL2

) = IL2
.

IL1
⊆ IL2

⇐⇒ ρ⪯(IL1
) ⊆ IL2

We define (u, v) ≡UP (u′, v′) iff uvω = u′v′ω, where (u, v), (u′, v′) ∈ Σ∗ × Σ+. Since
≡UP is a qo on Σ∗ × Σ+, the closure operator ρ≡UP

is well-defined. Let S ⊆ Σ∗ × Σ+

such that ρ≡UP
(S) = IL1 . Then, IL1 ⊆ IL2 ⇐⇒ S ⊆ IL2 [DG20]. Since ρ⪯(IL2) = IL2

and by monotonicity of ρ⪯ we obtain:

IL1
⊆ IL2

⇐⇒ ρ⪯(S) ⊆ IL2

We have to choose a suitable set S. In order to do this, we rely on the automaton
representation of the language L1. Let B = ⟨Q,Σ, δ, {i}, F ⟩ be a BA with L(B) = L1.
Observe that in [DG20] they consider automata with only one initial state. We
remark that it is always possible to construct from a BA B = ⟨Q,Σ, δ, I, F ⟩ a BA
B′ = ⟨Q ∪ {i},Σ, δ ∪ δ′, {i}, F ⟩ that has one single initial state and accepts the same
language of B: it is enough to add one new state i /∈ Q, to pick it as the only initial
state and to add to δ the new set of transitions δ′ = {(i, q) | ∃p ∈ I, q ∈ Q, a ∈ Σ :

q ∈ δ(p, a)}. For each p, q ∈ Q we define the FA Ap
q

△
= ⟨Q,Σ, δ, {p}, {q}⟩, and define

SB
△
=

⋃︁
p∈F L(Ai

p)× (L(Ap
p) \ {ϵ}). Since ρ≡UP

(SB) = IL(B) [DG20], by the previous
result:

IL(B) ⊆ IL2 ⇐⇒ ρ⪯(SB) ⊆ IL2

We now give a least fixpoint characterization of SB. For all p ∈ F , the languages
of the FAs Ai

p and Ap
p can be characterized by L(Ai

p) = ⟨lfp λX⃗.ϵi⃗ ∪ PostB(X⃗)⟩p and
L(Ap

p) \ {ϵ} = ⟨lfp λX⃗.ζ p⃗ ∪PostB(X⃗)⟩p [GRV19], where PostB : ℘(Σ∗)|Q| → ℘(Σ∗)|Q|
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is defined by PostB(X⃗)
△
= ⟨

⋃︁
a∈Σ,q′

a→q
Xq′a⟩q∈Q, ϵi⃗ △

= ⟨{ϵ | q = i}⟩q∈Q ∈ ℘(Σ∗)|Q|, and

ζ p⃗
△
= ⟨{a ∈ Σ | q ∈ δ(p, a)}⟩q∈Q ∈ ℘(Σ∗)|Q|. Letting D1,i

△
= λX⃗.ϵi⃗ ∪ PostB(X⃗) and

D2,p
△
= λX⃗.ζ p⃗ ∪ PostB(X⃗) we obtain that:

SB =
⋃︂
p∈F

(lfp D1,i)p × (lfp D2,p)p

For each p ∈ F , define the vector I⃗
p

L2
∈ ℘(Σ∗×Σ+) as (I⃗

p

L2
)q

△
= Σ∗×Σ+ for q ̸= p and

(I⃗
p

L2
)p

△
= IL2 . Lift × to vectors as follows: X⃗ × Y⃗ is the vector ⟨Xq × Yq⟩q∈Q where

X⃗
△
= ⟨Xq⟩q∈Q and Y⃗

△
= ⟨Yq⟩q∈Q. Let ≤1 ⊆ Σ∗×Σ∗ and ≤2 ⊆ Σ+×Σ+ two wqos such

that ⪯ = ≤1 ×≤2. This equality can be lifted to vectors. Using this we obtain:

ρ⪯(SB) ⊆ IL2
⇐⇒ ∀p ∈ F, ρ≤1

(lfp D1,i)× ρ≤2
(lfp D2,p) ⊆ I⃗

p

L2

Observe that the least fixed points have no guarantee to converge after finitely many
steps. We solve this issue by “pushing” the closure operator ρ inside the fixed point
expression, and this induces no loss of precision. This is the consequence of a property
of ρ relative to the function of the fixed point expression. A closure ρ is called backward
complete, or simply complete, for a function f : C → C when ρ ◦ f = ρ ◦ f ◦ ρ.
Suppose that ρ≤1

, ρ≤2
are backward complete for D1,i and D2,p respectively. It

implies completeness of least fixed points [CC79]: ρ≤1
(lfp D1,i) = lfp ρ≤1

◦D1,i and
ρ≤2

(lfp D2,p) = lfp ρ≤2
◦D2,p. Furthermore, it turns out that if one qo ≤ on Σ∗ is

right-monotonic, then it is also backward complete for D1,i and D2,p [DG20]. This
implies that if ≤1 and ≤2 are two right-monotonic wqos:

∀p ∈ F, ρ≤1
(lfp D1,i)×ρ≤2

(lfp D2,p) ⊆ I⃗
p

L2
⇐⇒ ∀p ∈ F, lfp ρ≤1

D1,i× lfp ρ≤2
D2,p ⊆ I⃗

p

L2

This solves the convergence problem. For simplicity ignore that we are working
on vectors by assuming D1,i : ℘(Σ∗) → ℘(Σ∗). Observe that since ≤1 is a wqo,
⟨{ρ≤1(S) | S ∈ ℘(Σ∗)},⊆⟩ is a complete sublattice verifying the ACC and, moreover,
ρ≤1 ◦D1,i is a monotone function, hence it is routine to check that ρ≤1 ◦D1,i preserves
∪, and finally that lfp ρ≤1

◦D1,i =
⋃︁

n(ρ≤1
◦D1,i)

n(∅) for some n ∈ N by the Kleene’s
iterative fixed point theorem. The same results also hold when considering ≤2 and
D2,p.

We define γ≤1
: ℘f (Σ

∗)→ ℘(Σ∗) such that γ≤1
(Y )

△
= ρ≤1

(Y ), which maps finite sets
of words onto upward-closed set. Backward completeness shows that ρ≤1

◦D1,i ◦ γ≤1
=

γ≤1 ◦D1,i. By induction we find that (ρ≤1 ◦D1,i)
n(∅) = γ≤1(D

n
1,i(∅)) for all n ∈ N,

hence that lfp ρ≤1D1,i = γ≤1(D
N
1,i(∅)) for some N ∈ N from the convergence result on

upward-closed sets previously stated. Observe that D1,i returns a finite set of words
when given one, that is, D1,i : ℘f (Σ

∗) → ℘f (Σ
∗). By induction we thus find that

Dn
1,i(∅) is finite and effectively computable for all n ≥ 0. The above reasoning also holds

for ≤2 and D2,p. Let N1, N2 ∈ N be such that (γ≤1
(DN1+1

1,i (∅)))q ⊆ (γ≤1
(DN1

1,i (∅)))q
and (γ≤2(D

N2+1
2,p (∅)))q ⊆ (γ≤2(D

N2
2,p(∅)))q for all q ∈ Q. Then, we obtain:

∀p ∈ F, lfp ρ≤1
D1,i× lfp ρ≤2

D2,p ⊆ I⃗
p

L2
⇐⇒ ∀p ∈ F, γ≤1

(DN1
1,i (∅))×γ≤2

(DN2
2,p(∅)) ⊆ I⃗

p

L2

We still have to show how to effectively detect when the sequence {Dn
1,i(∅)}n∈N has

converged, that is when (γ≤1(D
n+1
1,i (∅)))q ⊆ (γ≤1(D

n
1,i(∅)))q for all q ∈ Q. To this end
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define the qos ≤∀∃
1 on ℘f (Σ

∗) such that X ≤∀∃
1 Y

△⇐⇒ γ≤1(X) ⊆ γ≤1(Y ). Assuming
that the ordering ≤1 is decidable, we find that given X,Y ∈ ℘f (Σ

∗) we can decide
X ≤∀∃

1 Y by finding for each element x ∈ X an element y ∈ Y such that y ≤1 x.
The above reasoning also holds for ≤2 and D2,p. Finally, the lifting to vectors is
an easy exercise. Let N1, N2 ∈ N be such that (DN1+1

1,i (∅))q ≤∀∃
1 (DN1

1,i (∅))q and

(DN2+1
2,p (∅))q ≤∀∃

2 (DN2
2,p(∅))q for all q ∈ Q and p ∈ F . Given p ∈ F , let T⃗ p

△
= DN1

1,i (∅)×
DN2

2,p(∅). Observe that T⃗ p is an effectively computable element (℘f (Σ
∗)× ℘f (Σ

∗))|Q|.
We have:

∀p ∈ F, γ≤1
(DN1

1,i (∅))× γ≤2
(DN2

2,p(∅)) ⊆ I⃗
p

L2
⇐⇒ ∀p ∈ F, ρ⪯(T⃗ p) ⊆ I⃗

p

L2

Finally, since ρ⪯ is increasing and ρ⪯(IL2) = IL2 :

∀p ∈ F, ρ⪯(T⃗ p) ⊆ I⃗
p

L2
⇐⇒ ∀p ∈ F, T⃗ p ⊆ I⃗

p

L2

Observing that each element of the vector T⃗ p is finite, we can reduce inclusion to one
finite number of membership queries:

∀p ∈ F, T⃗ p ⊆ I⃗
p

L2
⇐⇒ ∀p ∈ F,∀(u, v) ∈ (T⃗ p)p, uv

ω ∈ L2

Summing up everything, we have:

L(B) ⊆ L2 ⇐⇒ ∀p ∈ F,∀(u, v) ∈ (T⃗ p)p, uv
ω ∈ L2

Algorithms BAPrefixes and BAPeriods compute respectively DN1
1,i (∅) and DN2

2,p(∅)
where N1, N2 ∈ N are the least values such that (DN1+1

1,i (∅))q ≤∀∃
1 (DN1

1,i (∅))q and
(DN2+1

2,p (∅))q ≤∀∃
2 (DN2

2,p(∅))q for all q ∈ Q and p ∈ F .
We slightly abuse the notation calling BAPrefixes: by BAPrefixes(B,≤1) we

mean to invoke the procedure BAPrefixes with actual parameters the automaton B
and the procedure to compute ≤1, and not ≤1 itself because it is an infinite relation.
The same holds for BAPeriods and ≤2. Finally, Algorithm BAInc computes whether
L(B) ⊆ L2 holds or not.

Discussion. We presented a framework for solving the language inclusion problem
for ω-regular languages which relies on the underlying automaton representation of the
language. Let ≤1 and ≤2 be two quasiorders on Σ∗. If the following conditions hold:

1. ≤1 and ≤2 are computable well-quasiorders;

2. ≤1 and ≤2 are right-monotonic;

3. ρ≤1×≤2(IL2) = IL2 .

Then, ≤1 and ≤2 can be used in Algorithm BAInc to solve the language inclusion
problem. Observe that condition (3) can be characterized alternatively as follows:

Proposition 2.5.1. ρ≤1×≤2
(IL2

) = IL2
iff ∀u, s ∈ Σ∗, v, t ∈ Σ+ such that uvω ∈ L2,

u ≤1 s and v ≤2 t, it holds that stω ∈ L2.

Proof. If ρ≤1×≤2
(IL2

) = IL2
, then consider u, s ∈ Σ∗, v, t ∈ Σ+ such that uv ∈ L2, u ≤1

s and v ≤2 t. By definition of ρ, s ∈ ρ≤1
(u) and t ∈ ρ≤2

(v), so that (s, t) ∈ ρ≤1×≤2
(IL2

)
and by hypothesis ρ≤1×≤2(IL2) = IL2 . Since IL2 = {(w1, w2) | w1w

ω
2 ∈ L2}, stω ∈ L2.

For the other implication we proceed by showing: (i) ρ≤1×≤2(IL2) ⊆ IL2 ; (ii)
IL2 ⊆ ρ≤1×≤2(IL2). Let (s, t) ∈ ρ≤1×≤2(IL2), then ∃(u, v) ∈ IL2 such that u ≤1 s
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BAPrefixes: Algorithm that computes DN1
1,i (∅), where N1 ∈ N is the least

value such that (DN1+1
1,i (∅))q ≤∀∃

1 (DN1
1,i (∅))q for all q ∈ Q

Data: Büchi automaton B = ⟨Q,Σ, δ, {i}, F ⟩
Data: Procedure deciding u ≤1 v, given u, v ∈ Σ∗

Result: DN1
1,i (∅), where N1 ∈ N is the least value such that

(DN1+1
1,i (∅))q ≤∀∃

1 (DN1
1,i (∅))q for all q ∈ Q

1 Prev ← ⟨∅⟩q∈Q ;
2 done← false ;
3 while done = false do
4 done← true ;
5 Next← D1,i(Prev) ;
6 forall q ∈ Q do
7 forall u ∈ (Next)q do
8 if ∄v ∈ (Prec)q such that v ≤1 u then
9 done← false;

10 end
11 end
12 end
13 if done = false then
14 Prev ← Next;
15 end
16 end
17 return Prev

and v ≤2 t. Then, by hypothesis, stω ∈ L2, so that (s, t) ∈ IL2 . Let (s, t) ∈ IL2 . We
observe that by reflexivity of ≤1 and ≤2 it holds that ∀w1 ∈ Σ∗, w1 ∈ ρ≤1(w1) and
∀w2 ∈ Σ+, w2 ∈ ρ≤2

(w2). This implies that (s, t) ∈ ρ≤1×≤2
(IL2

).

Observe that the performance of Algorithm BAInc depends on the choice of the
two wqos ≤1 and ≤2. Let ⪯1 ⊆ ≤1, then BAPrefixes(B,≤1) will converge in less
iterations than BAPrefixes(B,⪯1), because the condition at line 8 will result false
more often. The same holds for BAPeriods. This implies that we want to consider
coarser relations in order to let the algorithm converge faster.

Definition 2.5.2. Let ≤1,≤2 a pair of qos on Σ∗. We say that the pair ≤1,≤2 covers
an ω-regular language L iff:

L =
⋃︂

uvω∈L

ρ≤1
(u)ρ≤2

(v)ω

In [DG20] they observe that if ≤1,≤2 covers one language, then ρ≤1×≤2
(IL2

) = IL2
.

They also propose some wqos that meet the requirements of the framework. First, we
define the state-based wqos. Let u, v ∈ Σ∗ and B be a BA.

u ≤1
B v

△⇐⇒ ctxB(u) ⊆ ctxB(v)

u ≤2
B v

△⇐⇒ u ≤1
B v ∧ ctxF

B (u) ⊆ ctxF
B (v)
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BAPeriods: Algorithm that computes DN2
2,p(∅), where N2 ∈ N is the least

value such that (DN2+1
2,p (∅))q ≤∀∃

2 (DN2
2,p(∅))q for all q ∈ Q

Data: Büchi automaton B = ⟨Q,Σ, δ, {i}, F ⟩
Data: Procedure deciding u ≤2 v, given u, v ∈ Σ+

Data: Final state p ∈ F
Result: DN2

2,p(∅), where N2 ∈ N is the least value such that
(DN2+1

2,p (∅))q ≤∀∃
2 (DN2

2,p(∅))q for all q ∈ Q

1 Prev ← ⟨∅⟩q∈Q ;
2 done← false ;
3 while done = false do
4 done← true ;
5 Next← D2,p(Prev) ;
6 forall q ∈ Q do
7 forall u ∈ (Next)q do
8 if ∄v ∈ (Prec)q such that v ≤2 u then
9 done← false;

10 end
11 end
12 end
13 if done = false then
14 Prev ← Next;
15 end
16 end
17 return Prev

u ≤r
B v

△⇐⇒ postBu (I) ⊆ postBv (I)

Observe that ≤1
B has been already defined in Section 2.3.2. It holds that ≤1

B and
≤2

B are monotonic, while ≤r
B is right-monotonic. Furthermore, the pairs ≤1

B,≤2
B and

≤r
B,≤2

B cover L(B), so that they can be used to instantiate the Algorithm BAInc.
Next, we define the syntactic quasiorders. Let L ⊆ Σω. For u ∈ Σ∗ define

cL
△
= {(x, y, r) ∈ Σ∗3 | xuyrω ∈ L}, dL

△
= {(s, t) ∈ Σ∗2 | s(ut)ω ∈ L} and eL

△
= {(s, t) ∈

Σ∗2 | ustω ∈ L}. We define:

u ≤1
L v

△⇐⇒ cL(u) ⊆ cL(v)

u ≤2
L v

△⇐⇒ cL(u) ⊆ cL(v) ∧ dL(u) ⊆ dL(v)

u ≤r
L v

△⇐⇒ eL(u) ⊆ eL(v)

It holds that ≤1
L and ≤2

L are monotonic, while ≤r
L is right-monotonic. They are

computable wqos, and the pairs ≤1
L,≤2

L and ≤r
L,≤2

L cover L, so that they can be used
to instantiate the Algorithm BAInc. Let B be a BA such that L = L(B). It holds that
≤1

B ⊆ ≤1
L, ≤2

B ⊆ ≤2
L and ≤r

B ⊆ ≤r
L. Observe that furthermore in [DG20] they also

prove the following:

Proposition 2.5.3. Let ≤1,≤2 be a pair of qos covering L such that ≤2 ⊆ ≤1.
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BAInc: Algorithm that computes whether L(B) ⊆ L2 holds
Data: Büchi automaton B = ⟨Q,Σ, δ, {i}, F ⟩
Data: Procedure deciding uvω ∈ L2 given u ∈ Σ∗, v ∈ Σ+

Data: Decidable right-monotonic wqos ≤1,≤2 s.t. ρ≤1×≤2
(IL2

) = IL2

Result: Whether L(B) ⊆ L2 holds
1 Prefixes← BAPrefixes(B,≤1);
2 forall p ∈ F do
3 Periods← BAPeriods(B, ≤2, p) ;
4 forall u ∈ (Prefixes)p, v ∈ (Periods)p do
5 if uvω /∈ L2 then
6 return false
7 end
8 end
9 end

10 return true

• If ≤1,≤2 are both monotonic, then ≤1 ⊆ ≤1
L and ≤2 ⊆ ≤2

L;

• If ≤1 is right-monotonic, and ≤2 is monotonic then ≤1 ⊆ ≤1
L and ≤2 ⊆ ≤2

L.

We observe the following:

Proposition 2.5.4. Let B be a BA. Let ≤1,≤2 be a pair of qos such that ∀u, s ∈
Σ∗, v, t ∈ Σ+, if uvω ∈ L(B), u ≤1 s and v ≤2 t, then stω ∈ L(B). Then, ≤1,≤2 covers
L(B).

Proof. Let L =
⋃︁

uvω∈L(B) ρ≤1
(u)ρ≤2

(v)ω. We have to show that L = L(B). That
L(B) ⊆ L holds is implied by the fact that ≤1 and ≤2 are qos, so that they are reflexive.
That L ⊆ L(B) holds is implied by the hypothesis that ∀uvω ∈ L(B), if s ∈ Σ∗, t ∈ Σ+

are such that u ≤1 s and v ≤2 t, then stω ∈ L(B). This implies, by definition of L,
that each element in L is also in L(B).

In Chapter 3 we propose some suitable relations on words that can fit the described
framework. We will show that defining quasiorders on words that are based on
simulations we obtain relations that are coarser than the state-based ones, while
being finer than the syntactic qos, effectively lying the in the middle between the two
categories of preorders. In Chapter 4 we give some examples that show the practical
advantage of using simulation-based qos.

q0start q1

a, b

a

a

Figure 2.15: Büchi automaton that accepts the language (a+ b)∗aω

Example 2.5.5. We now give an example of a run of Algorithm BAInc. Let B be
the BA in Figure 2.15 and B′ be the BA in Figure 2.16. We want to decide whether
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q0start q1

a

b

Figure 2.16: Büchi automaton that accepts the language (ab)ω

L(B) ⊆ L(B′) holds or not. For this example, we instantiate the algorithm with the
state-based qos ≤1

B,≤2
B.

The first step is to compute the vector Prefixes, calling the procedure BAPrefixes(B,≤1
B).

Table 2.1 shows the first three Kleene’s iterates of the function D1,q0 relative to B.
We point out some of the relations between words based on ≤1

B. Observe that
ctxB(a) = {(q0, q0), (q0, q1), (q1, q1)} and ctxB(b) = {(q0, q0)}. Since ctxB(aa) =
{(q0, q0), (q0, q1), (q1, q1)}, we observe that ctxB(a) ⊆ ctxB(aa) so that a ≤1

B aa.
Similarly, ctxB(ab) = ctxB(bb) = {(q0, q0)}, hence b ≤1

B ab and b ≤1
B bb. Finally,

ctxB(ba) = {(q0, q0), (q0, q1)} and then b ≤1
B ba. Consider (D3

1,q0(∅))q0 . By the pre-
vious observations we can verify that ∀u ∈ (D3

1,q0(∅))q0 , ∃v ∈ (D2
1,q0(∅))q0 such that

v ≤1
B u. Furthermore, it also holds that ∀u ∈ (D3

1,q0(∅))q1 , ∃v ∈ (D2
1,q0(∅))q1 such that

v ≤1
B u. Hence, BAPrefixes(B,≤1

B) returns the vector ({a, b}, {a}).

q0 q1
D0

1,q0(∅) ∅ ∅
D1

1,q0(∅) {ϵ} ∅
D2

1,q0(∅) {ϵ, a, b} {a}
D3

1,q0(∅) {ϵ, a, b, aa, ab, ba, bb} {a, aa}
Table 2.1: The first three Kleene’s iterates of D1,q0 on the automaton in Figure 2.15

The second step is to compute, for each final state, the vector Periods. Since
there is just one final state, we now consider the only call to BAPeriods(B, ≤2

B).
Table 2.2 shows the first two Kleene’s iterates of the function D2,q1 relative to B.
We observe that ctxF

B (a) = {(q0, q1), (q1, q1)} and ctxF
B (aa) = {(q0, q1), (q1, q1)} so

that ctxF
B (a) ⊆ ctxF

B (aa) and ctxB(a) ⊆ ctxB(aa). This implies a ≤2
B aa, so that

∀u ∈ (D2
2,q1(∅))q1 ∃v ∈ (D1

2,q1(∅))q1 such that v ≤2
B u. Hence, BAPeriods(B, ≤2

B)
returns the vector (∅, {a}).

q0 q1
D0

2,q1(∅) ∅ ∅
D1

2,q1(∅) ∅ {a}
D2

2,q1(∅) ∅ {a, aa}
Table 2.2: The first two Kleene’s iterates of D2,q1 on the automaton in Figure 2.15

The last step is to compute whether ∀u ∈ (D2
1,q0(∅))q1 = {a}, v ∈ (D1

2,q1(∅))q1 = {a}
it holds that uvω ∈ L(B′). Since aω /∈ L(B′), the algorithm terminates and returns
false: L(B) ⊈ L(B′).
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2.5.2 Checking the language inclusion between regular and
context-free languages

In this Section we describe the framework put forward in [GRV19] to check whether
one context-free language L1 is contained in a regular language L2. We remark that
our main interest is in the language inclusion between ω-regular languages, but it turns
out that the qo that we define in Definition 3.1.1 can be plugged in this framework to
solve whether the language of a context-free grammar is included in a regular one.

Let G = ⟨V,Σ, P ⟩ be a CGF in CNF where V = {X0, . . . , Xn}. First, observe that
G induces the following set of equations:

Eqn(G) △
= {Xi = ∪X1→βj∈P βj | i ∈ [0, n]}

Given a subset of variables S ⊆ V of a grammar, the set of words generated from some
variable in S is defined as WG

S

△
= {w ∈ Σ∗ | ∃X ∈ S,X ⇝ w}. When S = {X} we

slightly abuse the notation and write WG
X . Observe that L(G) = WG

X0
.

In order to give a least fixpoint characterization of the language of G we define the
vector b⃗ ∈ ℘(Σ∗)|V| and the function FnG : ℘(Σ∗)|V| → ℘(Σ∗)|V|:

b⃗
△
= ⟨bi⟩i∈[0,n] where bi

△
= {β | Xi → β ∈ P, β ∈ Σ ∪ {ϵ}}

FnG(⟨Xi⟩i∈[0,n])
△
= ⟨β(i)

1 ∪ · · · ∪ β(i)
n ⟩i∈[0,n] where β

(i)
j ∈ V

2 and Xi → β
(i)
j ∈ P

We remark that λX⃗. b⃗∪FnG(X⃗) is a well-defined monotonic function in ℘(Σ∗)|V| →
℘(Σ∗)|V|, which therefore has the least fixpoint ⟨Yi⟩i∈[0,n] = lfp (λX⃗. b⃗ ∪ FnG(X⃗)). It
is well-known [GR62] that the language L(G) accepted by G is such that L(G) = Y0.
Let L2 be a language, we define ⟨L⃗

X0

2 ⟩0
△
= L2 and ⟨L⃗

X0

2 ⟩i∈[1,n]
△
= Σ∗. It turns out that:

L(G) ⊆ L2 ⇐⇒ lfp (λX⃗. b⃗ ∪ FnG(X⃗)) ⊆ L⃗
X0

2

Similarly to Section 2.5.1, backward completeness is again linked to effectively
checking the language inclusion. Let ρ be a upper closure operator on Σ∗. In [GRV19]
they show that if ρ is backward complete for both λX.Xa and λX.aX for all a ∈ Σ,
then ρ is backward complete for FnG and λX⃗.(b⃗ ∪ FnG(X⃗)). It turns out that if ρ is
backward complete for λX⃗.(b⃗ ∪ FnG(X⃗)), then:

ρ(lfp (λX⃗.(b⃗ ∪ FnG(X⃗)))) = lfp (λX⃗.ρ(b⃗ ∪ FnG(X⃗)))

Furthermore, if ρ is backward complete for left and right concatenation and ρ(L2) = L2,
then we have that:

L(G) ⊆ L2 ⇐⇒ lfp (λX⃗.ρ(b⃗ ∪ FnG(X⃗))) ⊆ L⃗
X0

2

We recall that a Galois Connection (GC) between two posets ⟨C,≤C⟩ (called
concrete domain) and ⟨A,≤A⟩ (called abstract domain) consists of two functions
α : C → A and γ : A → C such that α(c) ≤A a ⇐⇒ c ≤C γ(a) holds for all
c ∈ C and a ∈ A. A GC is denoted by ⟨C,≤C⟩ −−−→←−−−α

γ
⟨A,≤A⟩. If C or A is a qoset,

⟨C,≤C⟩ −−−→←−−−α
γ
⟨A,≤A⟩ is a quasiorder Galois Connection (QGC).

The following Theorem relies on the equivalence L(G) ⊆ L2 ⇐⇒ lfp (λX⃗.ρ(b⃗ ∪
FnG(X⃗))) ⊆ L⃗

X0

2 , but formulated on GCs rather than closures. In particular, it shows
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how to design an algorithm that solves L(G) ⊆ L2 on an abstraction D of the concrete
domain ⟨℘(Σ∗),⊆⟩ whenever D satisfies a list of requirements related to backward
completeness and computability.

Theorem 2.5.6. Let G be a CFG in CNF and let L2 be a language over Σ. Let
⟨℘(Σ∗),⊆⟩ −−−→←−−−α

γ
⟨D,≤D⟩ be a GC where ⟨D,≤D⟩ is a poset. Assume that the following

properties hold:

1. L2 ∈ γ(D) and for every a ∈ Σ, x ∈ ℘(Σ∗), γ(α(aX)) = γ(α(aγ(α(X)))) and
γ(α(Xa)) = γ(α(γ(α(X))a));

2. ⟨D,≤D,⊔,⊥D⟩ is an effective domain, meaning that ⟨D,≤D,⊔,⊥D⟩ is an ACC
join-semilattice with bottom ⊥D, every element of D has a finite representation,
the binary relation ≤D is decidable and the binary lub ⊔ is computable;

3. There is an algorithm, say Fn♯(X⃗
♯
), which computes α(FnG(γ(X⃗))), for all

X⃗
♯
∈ α(℘(Σ∗)|V|);

4. There is an algorithm, say b⃗
♯
, which computes α(b⃗);

5. There is an algorithm, say Incl♯(X⃗
♯
), which decides the abstract inclusion X⃗

♯
≤D

α(L⃗
X0

2 ), for all X⃗
♯
∈ α(℘(Σ∗)|V|).

Then, the following is an algorithm which decides whether L(G) ⊆ L2:{︄
⟨Y ♯

i ⟩i∈[0,n] ← Kleene(λX⃗
♯
.(b⃗

♯
∪ Fn♯

G(X⃗)), ⊥⃗D)
return Incl♯(⟨Y ♯

i ⟩i∈[0,n])

Theorem 2.5.6 is parametric on the effective domain D that can be used to instantiate
it. Let ≤ be a quasiorder on Σ∗. In [GRV19] they observe that the qoset of antichains
⟨AC⟨Σ∗,≤⟩,⊑⟩ can be viewed as an abstraction of the concrete domain of all languages
℘(Σ∗) as follows. The maps α≤ : ℘(Σ∗)→ AC⟨Σ∗,≤⟩ and γ≤ : AC⟨Σ∗,≤⟩ → ℘(Σ∗) are
defined by:

α≤(X)
△
= ⌊X⌋

γ≤(X)
△
= ρ≤(X)

Where α≤(X) is meant to return any minor set of the language X since minors
are not unique. It turns out that ⟨℘(Σ∗),⊆⟩ −−−−→←−−−−

α≤

γ≤
⟨AC⟨Σ∗,≤⟩,⊑⟩ is a QGC and

γ≤ ◦ α≤ = ρ≤. Since by definition α≤(X) = ⌊X⌋, and ⌊X⌋ is finite (see Section 2.3),
the QGC ⟨℘(Σ∗),⊆⟩ −−−−→←−−−−

α≤

γ≤
⟨AC⟨Σ∗,≤⟩,⊑⟩ allows us to represent and manipulate ≤-

upward closed sets in ℘(Σ∗) using finite subsets. Furthermore, they prove that if ≤ is
a L2-consistent well-quasiorder (see Section 2.3.2), Algorithm CFGInc solves whether
L(G) ⊆ L2 holds.

Let A be a FA. In [GRV19] they observe that ≤1
A and ≦L(A) (see Section 2.3.2)

are monotonic L(A)-consistent computable wqos that can be used to instantiate
Algorithm CFGInc in order to solve the language inclusion problem between context-
free and regular languages.

Even if we are mainly interested in the language inclusion problem between ω-
regular languages, we show that the quasiorder defined in Definition 3.1.1 is a L2-
consistent computable wqo when L2 is regular, and then it can be used to instantiate
Algorithm CFGInc.
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CFGInc: Algorithm that computes whether L(G) ⊆ L2 holds
Data: CGF G = ⟨V,Σ, P ⟩
Data: Procedure deciding u ∈ L2, given u ∈ Σ∗

Data: Decidable L2-consistent wqo ≤
Result: Whether L(G) ⊆ L2 holds

1 ⟨Y ♯
i ⟩i∈[0,n] ← Kleene(λX⃗.(⌊b⃗⌋ ∪ ⌊FnG(X⃗))⌋, ⟨∅⟩i∈[0,n]) ;

2 forall u ∈ Y0 do
3 if u /∈ L2 then
4 return false;
5 end
6 end
7 return true

Example 2.5.7. (Taken from [GRV19]) Let G = ⟨{X0, X1}, {a, b}, {X0 →
X0X1|X1X0|b,X1 → a}⟩ a CFG in CNF and A the automaton in Figure 2.17.
For this example, we instantiate the algorithm CFGInc with the state-based qua-
siorder ≤1

A. First, we observe some relations between words induced by ≤1
A. Ob-

serve ctxA(ϵ) = ctxA(a) = ctxA(b) = ctxA(aa) = {(q0, q0), (q1, q1), (q2, q2)}, more-
over ctxA(ab) = ctxA(a) and ctxA(ba) = ctxA(aa) = ctxA(baa) = ctxA(aab) =
ctxA(aba) = {(q0, q2), (q1, q2), (q2, q2)}. We show the first three Kleene iterates com-
puted by Algorithm CFGInc using the qo ≤1

A:

Y⃗
(0)

= ⟨∅, ∅⟩

Y⃗
(1)

= ⌊b⃗⌋ = ⟨{b}, {a}⟩

Y⃗
(2)

= ⌊b⃗⌋ ⊔ ⌊FnG(Y⃗
(1)

)⌋ = ⟨⌊{ba, ab, b}⌋, ⌊{a}⌋⟩ = ⟨{ba, ab, b}, {a}⟩

Y⃗
(3)

= ⌊b⃗⌋ ⊔ ⌊FnG(Y⃗
(2)

)⌋ = ⟨⌊{ba, ab, b}⌋, ⌊{a}⌋⟩ = ⟨{ba, ab, b}, {a}⟩

So that the least fixpoint is Y⃗ = ⟨{ba, ab, b}, {a}⟩. Since ab ∈ (Y⃗ )0 but ab /∈ L(A),
Algorithm CFGInc derives L(G) ⊈ L(A).

q0start q1 q2
a a

b a, b

b

Figure 2.17: Automaton that accepts the language (b+ ab∗a)(a+ b)∗





Chapter 3

Quasiorders on words

In this chapter we define various simulation-based qos and we point out how they
can be used to solve the language inclusion problem. In particular, in Section 3.1 we
introduce a number of different simulation-based quasiorders on words and for each
one of them we prove some properties; in Section 3.2 we show how the defined qos can
be used to solve the language inclusion problem and, finally, in Section 3.3 we discuss
the relations between the considered quasiorders.

3.1 Simulation-based quasiorders on Σ∗

In this section we define a number of qos on Σ∗ that are simulation-based. For each
one of them we provide one example, the proof of being a computable well-quasiorder,
we discuss its monotonicity properties and we make some meaningful comparisons with
other qos.

Definition 3.1.1. Let u, v ∈ Σ∗.

u ⊑1
A v

△⇐⇒ ∀(q1, q2) ∈ ctxA(u) ∃(q3, q4) ∈ ctxA(v)

such that q1 ⪯r q3 ∧ q2 ⪯di q4

Example 3.1.2. Let A be the automaton in Figure 3.1. We observe that b ⊑1
A d.

Consider ctxA(b) = {(q2, q3)} and ctxA(d) = {(q9, q10)}: if from q2 Spoiler plays
q2

a→R q1
a→R q0, Duplicator can play q9

a→R q8
a→R q0 and since q0 ∈ I Duplicator

wins, so that q2 ⪯r q9. Observe that doesn’t matter if q1 ∈ F , since ⪯r doesn’t impose
any condition on final states. It also holds that q3 ⪯di q10: if Spoiler plays q3

e→ q4,
Duplicator can answer q10

e→ q11 and q4 ⪯di q11. Furthermore, q4 ∈ F and q11 ∈ F .
The other cases are similar.

Proposition 3.1.3.
⊑1

A is a decidable wqo.

Proof. For every u ∈ Σ∗, ctxA(u) is a finite and computable set, ⪯di and ⪯r are
computable so that ⊑1

A is a decidable wqo.

Proposition 3.1.4 (Monotonicity). Let u, v, x, y ∈ Σ∗.

u ⊑1
A v =⇒ xuy ⊑1

A xvy

33



34 CHAPTER 3. QUASIORDERS ON WORDS

q0start

q1 q2 q3q3
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q8 q9 q10 q11 q12
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a, c d e f

a
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Figure 3.1: Example of ⊑1
A

Proof. Let (q′1, q
′
2) ∈ ctxA(xuy), then ∃(q1, q2) ∈ ctxA(u) such that q′1

x
⇝ q1 and

q2
y
⇝ q′2. Furthermore, since u ⊑1

A v, ∃(q3, q4) ∈ ctxA(v) such that q1 ⪯r q3 ∧ q2 ⪯di q4.

For Lemma 2.2.1, q′1
x
⇝ q1 implies that q1

xR

⇝R q′1, and since q1 ⪯r q3, ∃q′3 ∈ Q such

that q3
xR

⇝R q′3. Furthermore, for the definition of reverse simulation q′1 ⪯r q′3 holds.
Observe that q2

y
⇝ q′2 and q2 ⪯di q4 imply that ∃q′4 ∈ Q such that q4

y
⇝ q′4 and, due

to the definition of direct simulation, q′2 ⪯di q′4. (q′3, q
′
4) ∈ ctxA(xvy) holds because

(q3, q4) ∈ ctxA(v), q′3
x
⇝ q3 and q4

y
⇝ q′4.

We now discuss the relations between ⊑1
A and the qos on Σ∗ presented in Sec-

tion 2.3.2.

Proposition 3.1.5.
≤1

A ⊆ ⊑1
A

Proof. Let u, v ∈ Σ∗ such that u ≤1
A v. Then ctxA(u) ⊆ ctxA(v) so that ∀(q1, q2) ∈

ctxA(u) ∃(q3, q4) ∈ ctxA(v) such that q1 ⪯r q3 ∧ q2 ⪯di q4 because ⪯di and ⪯r are
reflexive. Then, ≤1

A ⊆ ⊑1
A.

Proposition 3.1.6. Let A be an FA.

⊑1
A ⊆ ≦L(A)

Proof. Let u, v ∈ Σ∗ such that u ⊑1
A v, (x, y) ∈ ctxL(A)(u), (q1, q2) ∈ ctxA(u) such

that x ∈ WA
I,q1

and y ∈ WA
q2,F

. Since u ⊑1
A v, ∃(q3, q4) ∈ ctxA(v) such that q1 ⪯r

q3 ∧ q2 ⪯di q4. Since x ∈ WA
I,q1

and q1 ⪯r q3, x ∈ WA
I,q3

. Similarly, since y ∈ WA
q2,F

and q2 ⪯di q4, y ∈WA
q4,F

so that (x, y) ∈ ctxL(A)(v). Then, ⊑1
A ⊆ ≦L(A).

Remark 3.1.7. Let A be the FA represented in Figure 3.2. In this case ctxA(c) =
{(q1, q4)} and ctxA(d) = {(q2, q5), (q3, q6)} so that d ≰1

A c. Furthermore we observe
that q2 ⪯r q1, q5 ⪯di q4, q3 ⪯r q1 and q6 ⪯di q4 so that ∀(p1, p2) ∈ ctxA(d) ∃(p3, p4) ∈
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q0start q2

q1

q3

q5

q4

q6
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d
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a

Figure 3.2: FA accepting the language (a+ b)ca+ ada+ bda.

ctxA(c) such that p1 ⪯r p3 ∧ p2 ⪯di p4 and then d ⊑1
A c. This shows that ≤A ⊊ ⊑1

A .
Let us observe that ctxL(A)(c) = {(a, a), (b, a)} and ctxL(A)(d) = {(a, a), (b, a)} so that
c ≦L(A) d. Furthermore c ⊑1

A d does not hold because ∄(p3, p4) ∈ ctxA(d) such that

q1 ⪯r p3: q2
b↛R and q3

a↛R. This shows that ⊑1
A ⊊ ≦L(A) .

Proposition 3.1.8.
⊑1

A ⊆ ⊑r
A ⊑1

A ⊆ ⊑l
A

Proof. Let u, v ∈ Σ∗ such that u ⊑1
A v. Consider (q1, q2) ∈ ctxA(u) such that q1 ∈ I so

that q2 ∈ postAu (I). Then ∃(q3, q4) ∈ ctxA(v) such that q1 ⪯r q3 ∧ q2 ⪯di q4. Observe
that q1 ∈ I and q1 ⪯r q3 imply that q3 ∈ I and then q4 ∈ postAv (I). Since q2 ⪯di q4,
u ⊑r

A v. The proof that ⊑1
A⊆ ⊑l

A is symmetric.

Remark 3.1.9.
⊑1

A ⊆ (⊑r
A ∩ ⊑l

A)

q0start q2

q1

q3 q4

q5

a

b

d

c

c

a

e

Figure 3.3: FA accepting the language ac+ bc+ dae.

Remark 3.1.10. Let A be the FA in Figure 3.3. Observe that a ⊑r
A b: postAa (I) =

{q1}, and q2 ∈ postAb (I) simulates q1. Furthermore, a ⊑l
A b because preAa (F ) = ∅.

Observe that (q3, q4) ∈ ctxA(a), but ∄(p3, p4) ∈ ctxA(b) such that p4
e→ and p3

d→R,



36 CHAPTER 3. QUASIORDERS ON WORDS

and then a ⊑1
A b does not hold. This shows that (a, b) ∈ ⊑r

A ∩ ⊑l
A and (a, b) /∈ ⊑1

A so
that ⊑1

A ⊊ ⊑r
A ∩ ⊑l

A .

We now give a definition of a quasiorder that is a strengthened version of ⊑1
A.

Definition 3.1.11. Let u, v ∈ Σ∗.

u ⊑2
A v

△⇐⇒ ∀(q1, q2) ∈ ctxA(u) ∃(q3, q4) ∈ ctxA(v) such that

(i) q1 ⪯b q3 ∧ q2 ⪯di q4

(ii) q1
u
↣ q2 =⇒ q3

v
↣ q4

q0start

q1 q2 q3 q4 q5

q6

q7 q8 q9 q10 q11

a

a b c d

e

a

a f g h

e

Figure 3.4: Example of ⊑2
A

Example 3.1.12. Let A be the automaton in Figure 3.4. We observe that bcd ⊑2
A fgh.

Consider ctxA(bcd) = {(q2, q5)}, ctxA(fgh) = {(q8, q11)}: if from q2 Spoiler plays
q2

a→R q1
a→R q0 Duplicator can play q8

a→R q7
a→R q0. Furthermore, q1 ∈ F , q7 ∈ F

and q0 ∈ I so that both initial and final states are matched. This implies q2 ⪯b q8. It

is also easy to see that q5 ⪯di q11. Furthermore observe that, since q2
bdc
↣ q5, it holds

that q8
fgh
↣ q11.

Proposition 3.1.13.
⊑2

A is a decidable wqo.

Proof. For every u ∈ Σ∗, ctxA(u) is a finite and computable set, ⪯di and ⪯b are
computable,

u
↣ is computable so that ⊑2

A is a decidable wqo.

Proposition 3.1.14 (Monotonicity). Let u, v, x, y ∈ Σ∗.

u ⊑2
A v =⇒ xuy ⊑2

A xvy

Proof. Let (q′1, q′2) ∈ ctxA(xuy), so that there exists ∃(q1, q2) ∈ ctxA(u) such that q′1
x
⇝

q1 and q2
y
⇝ q′2. Then, by u ⊑2

A v, ∃(q3, q4) ∈ ctxA(v) such that q1 ⪯b q3 ∧ q2 ⪯di q4.

Since q1
xR

⇝ q′1 and q1 ⪯b q3, ∃q′3 ∈ Q such that q3
xR

⇝ q′3. By definition of backward
simulation, q′1 ⪯b q′3. Since q2

y
⇝ q′2 and q2 ⪯di q4, ∃q′4 ∈ Q such that q4

y
⇝ q′4. By

definition of direct simulation, q′2 ⪯di q′4. Observe that (q′3, q
′
4) ∈ ctxA(xvy) because

q′3
x
⇝ q3, (q3, q4) ∈ ctvA(v) and q4

y
⇝ q′4. Assume now that q′1

xuy
↣ q′2 holds. At least

one of the following conditions holds: (i) q′1
x
↣ q1

u
⇝ q2

y
⇝ q′2; (ii) q′1

x
⇝ q1

u
↣ q2

y
⇝
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q′2; (iii) q′1
x
⇝ q1

u
⇝ q2

y
↣ q′2. If q′1

x
↣ q1

u
⇝ q2

y
⇝ q′2, by u ⊑2

A v, ∃(q3, q4) ∈ ctxA(v)

such that q1 ⪯b q3 ∧ q2 ⪯di q4. Since q1
xR

↣ q′1 and q1 ⪯b q3, ∃q′3 ∈ Q such that

q3
xR

↣ q′3. By definition of backward simulation, q′1 ⪯b q′3. Since q2
y
⇝ q′2 and q2 ⪯di q4,

∃q′4 ∈ Q such that q4
y
⇝ q′4. By definition of direct simulation, q′2 ⪯di q′4. Observe that

(q′3, q
′
4) ∈ ctxA(xvy) because q′3

x
↣ q3, (q3, q4) ∈ ctvA(v) and q4

y
⇝ q′4. The subcase

q′1
x
⇝ q1

u
⇝ q2

y
↣ q′2 is similar. If q′1

x
⇝ q1

u
↣ q2

y
⇝ q′2, by u ⊑2

A v, ∃(q3, q4) ∈ ctxA(v)

such that q1 ⪯b q3 ∧ q2 ⪯di q4. Furthermore, q3
v
↣ q4. Since q1

xR

⇝ q′1 and q1 ⪯b q3,

∃q′3 ∈ Q such that q3
xR

⇝ q′3. By definition of backward simulation, q′1 ⪯b q′3. Since
q2

y
⇝ q′2 and q2 ⪯di q4, ∃q′4 ∈ Q such that q4

y
⇝ q′4. By definition of direct simulation,

q′2 ⪯di q′4. Observe that (q′3, q
′
4) ∈ ctxA(xvy) because q′3

x
⇝ q3, (q3, q4) ∈ ctvA(v) and

q4
y
⇝ q′4. In each possible subcase q′3

xvy
↣ q′4.

Proposition 3.1.15.
⊑2

A ⊆ ⊑1
A

Proof. It is immediate to see that ⊑2
A ⊆ ⊑1

A, since ⪯b ⊆ ⪯r (see Section 2.4).

The following quasiorder is a generalization of ⊑r
A, that exploits the delayed simu-

lation in order to define a coarser relation.

Definition 3.1.16. Let u, v ∈ Σ∗.

u ⊑de,r
A v

△⇐⇒ ∀p ∈ postAu (I) ∃q ∈ postAv (I) such that p ⪯de q

q0start

q1

q2

q3

q4

a b

cd cd

Figure 3.5: Example of ⊑de,r
A

Example 3.1.17. Let A be the automaton in Figure 3.5. We observe that a ⊑de,r
A b.

Consider postAa (I) = {q1}, postAb (I) = {q3}: from q1 starts the infinite trace π0 =

q1
c→ q2

d→ q1
c→ · · · , which can be matched with the trace π1 = q3

c→ q4
d→ q3

c→ · · · .
Furthermore, each final state in π0 will be matched after exactly one move. This
implies q1 ⪯de q3, so that a ⊑de,r

A b.

Proposition 3.1.18.
⊑de,r

A is a decidable wqo.
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Proof. For every u ∈ Σ∗, postAu (I) is a finite and computable set, ⪯de is computable
so that ⊑de,r

A is a decidable wqo.

Proposition 3.1.19 (Right monotonicity). Let u, v, x ∈ Σ∗.

u ⊑de,r
A v =⇒ ux ⊑de,r

A vx

Proof. Let q ∈ postAux(I), then ∃i ∈ I, p ∈ Q such that i
u
⇝ p

x
⇝ q. Since u ⊑de,r

A v,
∃i′ ∈ I, p′ ∈ Q such that i′

v
⇝ p′ and p ⪯de p′. We observe that p

x
⇝ q and p ⪯de p′

implies that ∃q′ ∈ Q such that p′ x
⇝ q′. Furthermore, by definition of delayed simulation,

q ⪯de q′. We conclude by observing that q′ ∈ postAvx(I) implies that ux ⊑de,r
A vx.

Example 3.1.20. Let A be automaton in Figure 3.6. Observe that u ⊑de,r
A v, because

postAu (I) = {q1}, q1 ⪯de q4 and q4 ∈ postAv (I). Consider now postAwu(I) = {q8}: since
postAwv(I) = {q11}, ∄q ∈ postAwv(I) such that q8 ⪯de q. This is due to the fact that
q8

a→ q9, but q11
a↛. This implies that u ⊑de,r

A v ≠⇒ wu ⊑de,r
A wv, so that ⊑de,r

A is
not a left-monotonic quasiorder.
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c
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v b

Figure 3.6: Automaton that shows that ⊑de,r
A is not left-monotonic

Proposition 3.1.21.
⊑r

A ⊆ ⊑
de,r
A

Proof. Let u, v ∈ Σ∗ such that u ⊑r
A v. This implies that ∀u, v ∈ Σ∗, if ∀p ∈

postAu (I),∃q ∈ postAv (I) such that p ⪯di q, then it also holds that p ⪯de q. This is
implied by ⪯di ⊆ ⪯de (see Section 2.4).

The following quasiorder is the last one that we define and is another generalization
of ⊑r

A that relies on the fair simulation.

Definition 3.1.22. Let u, v ∈ Σ∗.

u ⊑fair,r
A v

△⇐⇒ ∀p ∈ postAu (I) ∃q ∈ postAv (I) such that p ⪯f q
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Figure 3.7: Example of ⊑fair,r
A

Example 3.1.23. Let A be the automaton in Figure 3.7. We observe that a ⊑fair,r
A b.

Consider postAa (I) = {q1}, postAb (I) = {q4}: from q1 starts the fair trace π0 = q1
c→

q2
d→ q3

e→ q1
c→ · · · , which can be matched with the trace π1 = q4

c→ q4
d→ q4

e→ q4
c→

q4 · · · . Furthermore, also π1 is fair. This implies q1 ⪯f q3, so that a ⊑fair,r
A b.

Proposition 3.1.24.
⊑fair,r

A is a decidable wqo.

Proof. For every u ∈ Σ∗, postAu (I) is a finite and computable set, ⪯f is computable so
that ⊑fair,r

A is a decidable wqo.

Remark 3.1.25. Let us observe that if p ⪯f q and π is a fair trace starting from p
then for all p′ ∈ Q such that, for some w ∈ Σ∗, p w

⇝ p′ is a prefix of π there exists
q′ ∈ Q such that q

w
⇝ q′ and p′ ⪯f q′. In fact, there exists a fair trace π′ starting from

q which matches π, so that there exists q′ ∈ Q such that q
w
⇝ q′. Moreover, the suffix

πp′→ is a fair trace matched by the fair trace π′
q′→, so that p′ ⪯f q′ holds.

Remark 3.1.26. Let us also remark that for all q ∈ Q, if there is no fair trace starting
from q, then for all q′ ∈ Q, q ⪯f q′ holds, because, by forward completeness of A, any
infinite (but not fair) trace starting from q can be matched by an infinite trace starting
from any q′ ∈ Q.

Proposition 3.1.27 (Right monotonicity). Let u, v, x ∈ Σ∗.

u ⊑fair,r
A v =⇒ ux ⊑fair,r

A vx

Proof. Consider i ∈ I, p, q ∈ Q such that i
u
⇝ p

x
⇝ q. Since p ∈ postAu (I) and

u ⊑fair,r
A v, ∃p′ ∈ Q such that p′ ∈ postAv (I), p ⪯f p′. If p x

⇝ q can be prolonged to a
fair trace π0 then, by Remark 3.1.25, there exists q′ ∈ Q such that p′ x

⇝ q′ and q ⪯f q′

holds. If p x
⇝ q cannot be prolonged to a fair trace, by forward completeness of A, the

finite trace p
x
⇝ q can still be matched so that there exists q′ ∈ Q such that p′

x
⇝ q′.

Moreover, since there exists no fair trace starting from q, otherwise p
x
⇝ q could be

prolonged to a fair trace, by Remark 3.1.26, it turns out that q ⪯f q′.

Example 3.1.28. Let A be automaton in Figure 3.8. Observe that u ⊑fair,r
A v,

because postAu (I) = {q1}, q1 ⪯f q4 and q4 ∈ postAv (I). Consider now postAwu(I) = {q9}:
since postAwv(I) = {q12}, ∄q ∈ postAwv(I) such that q8 ⪯f q. This is due to the fact that
from q9 starts one fair trance, while from q12 starts an infinite but not fair trace. This
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implies that u ⊑fair,r
A v ≠⇒ wu ⊑fair,r

A wv, so that ⊑fair,r
A is not a left-monotonic

quasiorder.

q0start

q4

q8

q1

q11

q2 q3

q5 q6 q7

q9 q10

q12 q13

u

v

w

w

a b

c

a b c

c

u a

b

v a

b

Figure 3.8: Automaton that shows that ⊑fair,r
A is not left-monotonic

Proposition 3.1.29.
⊑de,r

A ⊆ ⊑fair,r
A

Proof. Let u, v ∈ Σ∗ such that u ⊑de,r
A v. Since ∀p ∈ postAu (I),∃q ∈ postAv (I) such

that p ⪯de q, then it also holds that p ⪯f q. This is due to the fact that ⪯de ⊆ ⪯f

(see Section 2.4).

3.1.1 Other simulation-based quasiorders on Σ∗

We define here two families of qos on words that are not suitable for being used in
Algorithm BAInc to check the language inclusion, since it turns out that they are not
right-monotonic qos. The first relies on the k-lookahead simulation, while the second
on trace inclusions.

Definition 3.1.30. Let u, v ∈ Σ∗, x ∈ {di, de, f} and k ≥ 1.

u ⊑k−x
A v

△⇐⇒ ∀(q1, q2) ∈ ctxA(u) ∃(q3, q4) ∈ ctxA(v) such that

q1 ⪯b q3 ∧ q2 ⪯k−x q4

Example 3.1.31. Let A be the automaton in Figure 3.9. Consider k = 2: q2 ⪯2−x q7.
This is due to the fact that if Spoiler plays q2

w1→ q3
w2→ q4 Duplicator can play

q7
w1→ q8

w2→ q10. Similarly, if Spoiler plays q2
w1→ q3

w3→ q5, Duplicator can answer
q7

w1→ q9
w3→ q11. It is obvious that q4 ⪯2−x q10 and q5 ⪯2−x q11. Observe that

ctxA(u) = {(q1, q2)} and ctxA(v) = {(q6, q7)}. Since q2 ⪯2−x q7 and q1 ⪯b q6,
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Figure 3.9: Example of use of ⊑k−x
A and ⊑t−x

A

∀(p1, p2) ∈ ctxA(u) ∃(p3, p4) ∈ ctxA(v) such that p1 ⪯b p3 ∧ p2 ⪯2−x p4, and then
u ⊑2−x

A v.
Consider now uw1 and vw1. Observe that ctxA(uw1) = {(q1, q3)} and ctxA(vw1) =

{(q6, q8), (q6, q9)}. Due to the fact that q8
w3↛ and q9

w2↛, q3 ⪯2−x q8 and q3 ⪯2−x q9
don’t hold. This implies that also uw1 ⊑2−x

A vw1 doesn’t hold. We showed that
∃u, v, w1 ∈ Σ∗ such that u ⊑2−x

A v ≠⇒ uw1 ⊑2−x
A vw1, so that ⊑k−x

A is not right-
monotonic. This implies that for our purposes ⊑k−x

A is not interesting.

Definition 3.1.32. Let u, v ∈ Σ∗ and x ∈ {di, de, f}.

u ⊑t−x
A v

△⇐⇒ ∀(q1, q2) ∈ ctxA(u) ∃(q3, q4) ∈ ctxA(v) such that

q1 ⪯b q3 ∧ q2 ⪯t−x q4

Example 3.1.33. Let A be the automaton in Figure 3.9. Observe that q2 ⪯t−x q7.
This is due to the fact that no matter what Spoiler plays from q2, Duplicator will
always be able to match that play. If Spoiler plays q2

w1→ q3
w2→ q4 Duplicator can

play q7
w1→ q8

w2→ q10. Similarly, if Spoiler plays q2
w1→ q3

w3→ q5, Duplicator can
answer q7

w1→ q9
w3→ q11. Observe that ctxA(u) = {(q1, q2)} and ctxA(v) = {(q6, q7)}.

Since q2 ⪯t−x q7 and q1 ⪯b q6, ∀(p1, p2) ∈ ctxA(u) ∃(p3, p4) ∈ ctxA(v) such that
p1 ⪯b p3 ∧ p2 ⪯t−x p4, and then u ⊑t−x

A v.
Observe that q3 ⪯t−x q8 and q3 ⪯t−x q9 don’t hold due to the fact that q8

w3↛
and q9

w2↛. This implies that also uw1 ⊑t−x
A vw1 doesn’t hold. We showed that

∃u, v, w1 ∈ Σ∗ such that u ⊑t−x
A v ≠⇒ uw1 ⊑t−x

A vw1, so that ⊑t−k
A x is not

right-monotonic. This implies that for our purposes ⊑t−k
A x is not interesting.
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3.2 Using simulation-based quasiorders to solve the
language inclusion problem

In this section we show how to to use the simulation-based quasiorders to solve the
language inclusion problem. In particular, in Section 3.2.1 we show which pairs of qos
can be used in Algorithm BAInc for checking the inclusion between the languages of two
Büchi automata, while in Section 3.2.2 we point out that CFGInc can be instantiated
with ⊑1

A to solve the language inclusion problem between CFGs and FAs.

3.2.1 Languages recognized by Büchi automata
We remark that the algorithm that decides the language inclusion between two

ω-regular languages is parametrized by two qos ≤1,≤2 that must be:

1. computable well-quasiorders;

2. right-monotonic;

3. such that ρ≤1×≤2(IL2) = IL2 .

We observe that the quasiorders defined in Section 3.1 meet the first two requirements.
We remark that Proposition 2.5.1 offers an alternative characterization of the third one.
Observe that in order to show that ∀u, s ∈ Σ∗, v, t ∈ Σ+ such that uvω ∈ L2, u ≤1 s
and v ≤2 t, it holds that stω ∈ L2, we can proceed as follows:

1. We prove ∀u, s ∈ Σ∗, v ∈ Σ+, if uvω ∈ L2 and u ≤1 s, then svω ∈ L2;

2. We prove ∀u ∈ Σ∗, v, t ∈ Σ+, if uvω ∈ L2 and v ≤2 t, then utω ∈ L2.

And then stω ∈ L2 immediately follows. This is exactly what we show: first we
prove that 1 holds for ⊑1

A, ⊑r
A, ⊑de,r

A and ⊑fair,r
A ; then, we show that 2 holds for ⊑2

A.
This implies that the pairs (⊑1

A,⊑2
A), (⊑r

A,⊑2
A), (⊑

de,r
A ,⊑2

A) and (⊑fair,r
A ,⊑2

A) can be
used in Algorithm BAInc to solve the language inclusion problem between ω-regular
languages.

Proposition 3.2.1. Let B be a BA, u, s ∈ Σ∗, v ∈ Σ+ such that uvω ∈ L(B) and
u ⊑1

B s. Then, svω ∈ L(B).

Proof. If uvω ∈ L(B), then ∃i ∈ I, p, q ∈ Q such that i u
⇝ p

vn

⇝ q
vm

↣ q for n ≥ 0,m ≥ 1.
Since (i, p) ∈ ctxB(u), by u ⊑1

B s, ∃(i′, p′) ∈ ctxB(s) such that i ⪯r i′ and p ⪯di p′.
Since i ∈ I and i ⪯r i′, then i′ ∈ I. Furthermore, since from p starts one fair trace
that matches the infinite word vω, by p ⪯di p′, also from p′ starts one fair trace that
matches the same infinite word. We recall that one trace is fair if qf ∈ F is present in
the trace infinitely many times. This implies that svω ∈ L(B).

Proposition 3.2.2. Let B be a BA, u, s ∈ Σ∗, v ∈ Σ+ such that uvω ∈ L(B) and
u ⊑r

B s. Then, svω ∈ L(B).

Proof. Since uvω ∈ L(B), ∃i ∈ I, p, q ∈ Q such that i
u
⇝ p

vn

⇝ q
vm

↣ q for some
n ≥ 0,m ≥ 1. By u ⊑r

B s, ∃i′ ∈ I, p′ ∈ Q such that i′
s
⇝ p′ and p ⪯di p′. We

observe that from p starts a fair trace π0 = p
a1→ p1

a2→ · · · an→ pn
a1→ pn+1

a2→ pn+2 · · ·
where a1 . . . an = v. For this reason and by p ⪯di p′, also from p′ starts a fair trace
π1 = p′

a1→ p′1
a2→ · · · an→ p′n

a1→ p′n+1
a2→ p′n+2 · · · , and then svω ∈ L(B).
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Proposition 3.2.3. Let B be a BA, u, s ∈ Σ∗, v ∈ Σ+ such that uvω ∈ L(B) and
u ⊑de,r

B s. Then, svω ∈ L(B).

Proof. Since uvω ∈ L(B), ∃i ∈ I, p, q ∈ Q such that i
u
⇝ p

vn

⇝ q
vm

↣ q for some
n ≥ 0,m ≥ 1. By u ⊑de,r

B s, ∃i′ ∈ I, p′ ∈ Q such that i′
s
⇝ p′ and p ⪯de p′. We

observe that from p starts a fair trace π0 = p
a1→ p1

a2→ · · · an→ pn
a1→ pn+1

a2→ pn+2 · · ·
where a1 . . . an = v. For this reason and by p ⪯de p′, also from p′ starts a fair trace
π1 = p′

a1→ p′1
a2→ · · · an→ p′n

a1→ p′n+1
a2→ p′n+2 · · · , and then svω ∈ L(B).

Proposition 3.2.4. Let B be a BA, u, s ∈ Σ∗, v ∈ Σ+ such that uvω ∈ L(B) and
u ⊑fair,r

B s. Then, svω ∈ L(B).

Proof. Since uvω ∈ L(B), ∃i ∈ I, p, q ∈ Q such that i
u
⇝ p

vn

⇝ q
vm

↣ q for some
n ≥ 0,m ≥ 1. By u ⊑fair,r

B s, ∃i′ ∈ I, p′ ∈ Q such that i′
s
⇝ p′ and p ⪯f p′. We

observe that from p starts a fair trace π0 = p
a1→ p1

a2→ · · · an→ pn
a1→ pn+1

a2→ pn+2 · · ·
where a1 . . . an = v. For this reason and by p ⪯f p′, also from p′ starts a fair trace
π1 = p′

a1→ p′1
a2→ · · · an→ p′n

a1→ p′n+1
a2→ p′n+2 · · · , and then svω ∈ L(B).

In order to prove that ∀u ∈ Σ∗, v, t ∈ Σ+ such that uvω ∈ L(B) and v ⊑2
B t, it holds

that utω ∈ L(B), we need two preliminary results.

Lemma 3.2.5. Let A be an automaton. Let u, v, w ∈ Σ∗ such that u ⊑2
A v, i ∈

I, p, q ∈ Q, such that i w
⇝ p

un

⇝ q for n ≥ 1. Then ∀n′, n′′ : n′+n′′ = n, n′, n′′ ≥ 0,∃i′ ∈

I, p′1, p
′
2, q

′ ∈ Q such that i′
w
⇝ p′1

vn′

⇝ p′2
un′′

⇝ q′ ∧ p ⪯b p′1 ∧ q ⪯di q′.

Proof. It follows from one induction on n′. If n′ = 0, then n′′ = n. We observe that

i
w
⇝ p

ϵ
⇝ p

un′′

⇝ q, and since ⪯b and ⪯di are reflexive the thesis holds. If 0 < n′ ≤ n, by

induction hypothesis ∃i′′ ∈ I, p′′1 , p
′′
2 , p

′′
3 , q

′′ ∈ Q such that i′′
w
⇝ p′′1

vn′−1

⇝ p′′2
u
⇝ p′′3

un′′

⇝
q′′ ∧ p ⪯b p′′1 ∧ q ⪯di q′′. Since (p′′2 , p

′′
3) ∈ ctxA(u) and u ⊑2

A v, ∃(p′2, p′3) ∈ ctxA(v)
such that p′′2 ⪯b p′2 ∧ p′′3 ⪯di p′3. p′′2 ⪯b p′2 implies that ∃i′ ∈ I, p′1,∈ Q such that

i′
w
⇝ p′1

vn′−1

⇝ p′2 and p′′1 ⪯b p′1. Furthermore p′′3
un′′

⇝ q′′ implies that ∃q′ ∈ Q, p′3
un′′

⇝ q′

and q′′ ⪯di q′. We conclude observing that by transitivity p ⪯b p′1 and q ⪯di q′.

Lemma 3.2.6. Let A be an automaton. Let u, v, w ∈ Σ∗ such that u ⊑2
A v, i ∈

I, p1, p2, q ∈ Q. If i w
⇝ p1

u
↣ p2

un

⇝ q, then ∃i′ ∈ I, p′1, p
′
2, q

′ ∈ Q such that i′
w
⇝ p′1

v
↣

p′2
vn

⇝ q′ ∧ p1 ⪯b p′1 ∧ q ⪯di q′.

Proof. By u ⊑2
A v, from p1

u
↣ p2 we obtain that ∃(p′′1 , p′′2) ∈ ctxA(v) such that

p1 ⪯b p′′1 ∧ p2 ⪯di p′′2 ∧ p′′1
v
↣ p′′2 . Since i

w
⇝ p1 and p2

un

⇝ q this implies that
∃i′′ ∈ I, q′′ ∈ Q such that i′′

w
⇝ p′′1

v
↣ p′′2

un

⇝ q′′ ∧ q ⪯di q′′. By Lemma 3.2.5
∃i′1 ∈ I, p′2, q

′ ∈ Q such that i′1
wv
⇝ p′2

vn

⇝ q′ ∧ p′′2 ⪯b p′2 ∧ q′′ ⪯di q′. p′′2 ⪯b p′2 and

p′′2
vR

↣R p′′1 imply that ∃p′1 ∈ Q, p′2
vR

↣R p′1. By definition of backward simulation,
p′′1 ⪯b p′′1 so that ∃i′2 ∈ I such that i′2

w
⇝ p′1

v
↣ p′2

vn

⇝ q′. We conclude by observing
that, by transitivity, p1 ⪯b p′1 ∧ p2 ⪯di p′2.

Proposition 3.2.7. Let B be a BA, u,∈ Σ∗, v, t ∈ Σ+ such that uvω ∈ L(B) and
v ⊑2

B t. Then, utω ∈ L(B).
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Proof. The idea is to show that we can keep substituting pairs of states in ctxB(v) with
pairs in ctxB(t). It turns out that if we do this enough times, by the pigeonhole principle

we find a loop. Since, uvω ∈ L(B) holds, ∃i ∈ I, p, q0 ∈ Q such that i
u
⇝ p

vn

⇝ q0
vm

↣ q0
for some n,m ≥ 1 Then ∃π = q0

a0→ q1
a1→ · · · an̂→ q0 where a0a1 . . . an̂ = vm. At least

one of the states in π is final, say qi with i ∈ [0..n̂]. Let j, k such that qj
x
↣ qi

y
↣ qk,

where xy = v. Observe that (qj , qk) ∈ ctxF
B (v). Let m′ be the least value such that

q0
vm′

⇝ qj . It holds that i
u
⇝ p

vnvm′

⇝ qj
v
↣ qk. By Lemma 3.2.5 and since v ⊑2

B t,

∃i′ ∈ I, p′, q′0 ∈ Q such that i′
u
⇝ p′

tntm
′

⇝ q′0 ∧ qj ⪯di q′0, and then ∃q̂′0 such that
q′0

v
↣ q̂′0 ∧ qk ⪯di q̂′0. This implies that ∃q′1, q̂

′
1, q

′
2, q̂

′
2, . . . , q

′
|Q|+1, q̂

′
|Q|+1 ∈ Q such that:

i′
u
⇝ p′

tntm
′

⇝ q′0
v
↣ q̂′0

vm−1

⇝ q′1
v
↣ q̂′1

vm−1

⇝ · · · v
m−1

⇝ q′|Q|
v
↣ q̂′|Q|

vm−1

⇝ q′|Q|+1

v
↣ q̂′|Q|+1

and qk ⪯di q̂′|Q|+1. Applying Lemma 3.2.6 we observe that ∃i′′ ∈
I, q′′0 , q̂

′′
0 , q

′′
1 , q̂

′′
1 , . . . , q

′′
|Q|+1, q̂

′′
|Q|+1 ∈ Q such that:

i′′
utntm

′

⇝ q′′0
t
↣ q̂′′0

tm−1

⇝ q′′1
v
↣ q̂′′1

vm−1

⇝ · · · v
m−1

⇝ q′′|Q|
v
↣ q̂′′|Q|

vm−1

⇝ q′′|Q|+1

v
↣ q̂′′|Q|+1

and qk ⪯di q̂′′|Q|+1. Applying Lemma 3.2.6 |Q| more times, we observe that: ∃i′′′ ∈
I, q′′′0 , q̂′′′0 , q′′′1 , q̂′′′1 , . . . , q′′′|Q|+1, q̂

′′′
|Q|+1 ∈ Q such that:

i′′′
utntm

′

⇝ q′′′0
t
↣ q̂′′′0

tm−1

⇝ q′′′1
t
↣ q̂′′′1

tm−1

⇝ · · · t
m−1

⇝ q′′′|Q|
t
↣ q̂′′′|Q|

tm−1

⇝ q′′′|Q|+1

v
↣ q̂′′′|Q|+1

By the pingeonhole principle, we can find î, ĵ ∈ [0..|Q|] such that î < ĵ ∧ q′′′
î

= q′′′
ĵ

.

Therefore, ∃n̂, m̂, i′′′
utn̂

⇝ q′′′
î

tm̂

↣ q′′′
î

so that utω ∈ L(B).

The following list of propositions summarizes which pairs of simulation-based
quasiorders meet the requirement ρ≤1×≤2

(IL2
) = IL2

.

Proposition 3.2.8. Let B be a BA.

ρ⊑1
B×⊑2

B
(IL(B)) = IL(B)

Proof. It follows immediately from Proposition 2.5.1, Proposition 3.2.1 and Proposi-
tion 3.2.7.

Proposition 3.2.9. Let B be a BA.

ρ⊑r
B×⊑2

B
(IL(B)) = IL(B)

Proof. It follows immediately from Proposition 2.5.1, Proposition 3.2.2 and Proposi-
tion 3.2.7.

Proposition 3.2.10. Let B be a BA.

ρ⊑de,r
B ×⊑2

B
(IL(B)) = IL(B)

Proof. It follows immediately from Proposition 2.5.1, Proposition 3.2.3 and Proposi-
tion 3.2.7.
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Proposition 3.2.11. Let B be a BA.

ρ⊑fair,r
B ×⊑2

B
(IL(B)) = IL(B)

Proof. It follows immediately from Proposition 2.5.1, Proposition 3.2.4 and Proposi-
tion 3.2.7.

3.2.2 Languages recognized by CFGs and FAs
In what follows, we show that ⊑1

A meets the requirements of the framework described
in [GRV19], and then can be used to instantiate Algorithm CFGInc to check le language
inclusion between context-free and regular languages.

Proposition 3.2.12. Let A be an FA.

⊑1
A ∩ (L(A)× ¬L(A)) = ∅

Proof. Let u ∈ L(A), then ∃(q1, q2) ∈ ctxA(u) such that q1 ∈ I and q2 ∈ F . Let
v /∈ L(A), then ∀(q3, q4) ∈ ctxA(v), q3 /∈ I ∨ q4 /∈ F holds. If q3 /∈ I, since q1 ∈ I,
then q1 ⪯̸r q3. If q4 /∈ F , since q2 ∈ F , then q2 ⪯̸di q4. In both cases u ⊑1

A v does not
hold.

Proposition 3.2.13. Let A be a FA.

⊑1
A is a L(A)-consistent decidable wqo.

Proof. We remark a quasiorder ≤ is L(A)-consistent iff it is a computable right-
monotonic wqo such that ≤ ∩ (L(A)× ¬L(A)) = ∅. Then, thesis follows immediately
from Proposition 3.1.3, 3.1.4 and 3.2.12

We remark that the only requirement of Algorithm CFGInc for the quasiorder ≤
is to be L2-consistent. Since for a FA A, ⊑1

A is L(A)-consistent, it can be used to
instantiate Algorithm CFGInc to check the language inclusion between context-free
and regular languages.

3.3 Overview of the considered quasiorders
In this section we summarize the properties of the considered quasiorders for

the [DG20]’s framework: the newly defined simulation-based qos, the state-based and
the syntactic ones. We also discuss some of the relations between them. In what
follows let B be a BA. We recall from Proposition 3.1.15 that:

⊑2
B ⊆ ⊑1

B

Furthermore, Proposition 3.1.8 states that:

⊑1
B ⊆ ⊑r

B

We remark that Proposition 3.1.21 states:

⊑r
B ⊆ ⊑

de,r
B

Additionally, Proposition 3.1.29 states:

⊑de,r
B ⊆ ⊑fair,r

B
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Type Quasiorder Monotonicity
Simulation-based ⊑1

B Monotonic Proposition 3.1.4
⊑2

B Monotonic Proposition 3.1.14
⊑r

B Right-monotonic [GRV19]
⊑de,r

B Right-monotonic Proposition 3.1.19
⊑fair,r

B Right-monotonic Proposition 3.1.27
State-based ≤1

B Monotonic [DG20]
≤2

B Monotonic [DG20]
≤r

B Right-monotonic [DG20]
Syntactic ≤1

L(B) Monotonic [DG20]
≤2

L(B) Monotonic [DG20]
≤r

L(B) Right-monotonic [DG20]
Table 3.1: Monotonicity properties of the considered qos

Type Quasiorder Proof of being a computable well-quasiorder
Simulation-based ⊑1

B Proposition 3.1.3
⊑2

B Proposition 3.1.13
⊑r

B [GRV19]
⊑de,r

B Proposition 3.1.18
⊑fair,r

B Proposition 3.1.24
State-based ≤1

B [DG20]
≤2

B [DG20]
≤r

B [DG20]
Syntactic ≤1

L(B) [DG20]
≤2

L(B) [DG20]
≤r

L(B) [DG20]
Table 3.2: Proofs of being a computable well-quasiorder for the considered qos

Table 3.1 summarizes the monotonicity properties of the considered quasiorders. Ta-
ble 3.2 summarizes where the reader can find the proofs that the considered quasiorders
are computable well-quasiorders.

We recall that two qos ≤1,≤2, in order to be used in the framework for checking the
language inclusion between ω-regular languages, must meet the following requirements:

1. ≤1 and ≤2 must be computable well-quasiorders;

2. ≤1 and ≤2 must be right-monotonic;

3. It must hold that ρ≤1×≤2
(IL2

) = IL2
.

While Table 3.1 and Table 3.2 show that the considered quasiorders meet the first two
requirements, Table 3.3 summarizes which pairs of qos meet the last one.

We now discuss the relations between the simulation-based and the state-based qos.
Observe that ≤2

B ⊆ ≤1
B ⊆ ≤r

B [DG20]. Since ∀u, v ∈ Σ∗, if ctxB(u) ⊆ ctxB(v), then
∀(q1, q2) ∈ ctxB(u) ∃(q3, q4) ∈ ctxB(v) such that q1 ⪯r q3 and q2 ⪯di q4, because ⪯r

and ⪯di are reflexive. This implies:

≤1
B ⊆ ⊑1

B
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Type ≤1 ≤2

Simulation-based ⊑1
B ⊑2

B Proposition 3.2.8
⊑r

B ⊑2
B Proposition 3.2.9

⊑de,r
B ⊑2

B Proposition 3.2.10
⊑fair,r

B ⊑2
B Proposition 3.2.11

State-based ≤1
B ≤2

B [DG20]
≤r

B ≤2
B [DG20]

Syntactic ≤1
L(B) ≤2

L(B) [DG20]
≤r

L(B) ≤2
L(B) [DG20]

Table 3.3: Pairs of quasiorders that meet the requirement ρ≤1×≤2(IL2) = IL2

Similarly, ∀u, v ∈ Σ∗, if ctxB(u) ⊆ ctxB(v) and ctxF
B (u) ⊆ ctxF

B (v) then ∀(q1, q2) ∈
ctxB(u) ∃(q3, q4) ∈ ctxB(v) such that q1 ⪯b q3 and q2 ⪯di q4 again because ⪯b

and ⪯di are reflexive. Furthermore, q1
u
↣ q2 implies (q1, q2) ∈ ctxF

B (u), so that
(q3, q4) ∈ ctxF

B (v). This implies:
≤2

B ⊆ ⊑2
B

Lastly, ∀u, v ∈ Σ∗, if postBu (I) ⊆ postBv (I) we observe that ∀p ∈ postBu (I),∃q ∈ postBv (I)
such that p ⪯di q again by reflexivity of ⪯di, so that:

≤r
B ⊆ ⊑r

B

For analogous arguments it holds that ≤r
B ⊆ ⊑

de,r
B and ≤r

B ⊆ ⊑
fair,r
B .

We now discuss the relations between the simulation-based qos and the syntactic
qos. Observe that ≤2

L(B) ⊆ ≤
1
L(B) ⊆ ≤

r
L(B) [DG20]. First, Table 3.4 summarizes the

fact that all the proposed pairs of simulation-based qos cover the language of a BA.

≤1 ≤2 Coverage of L(B)
⊑1

B ⊑2
B Proposition 2.5.4, Proposition 3.2.1 and Proposition 3.2.7

⊑r
B ⊑2

B Proposition 2.5.4, Proposition 3.2.2 and Proposition 3.2.7
⊑de,r

B ⊑2
B Proposition 2.5.4, Proposition 3.2.3 and Proposition 3.2.7

⊑fair,r
B ⊑2

B Proposition 2.5.4, Proposition 3.2.4 and Proposition 3.2.7
Table 3.4: Coverage properties of the pairs of simulation-based qos

By the monotonicity properties of the simulation-based qos, their relations and
the fact that they cover the language of a BA, by Proposition 2.5.3, we can infer the
following relations:

⊑1
B ⊆ ≤1

L(B)

⊑2
B ⊆ ≤2

L(B)

⊑r
B ⊆ ≤r

L(B)

⊑de,r
B ⊆ ≤r

L(B)

⊑fair,r
B ⊆ ≤r

L(B)

Finally, Figure 3.10 summarizes the relations between the considered quasiorders.
One arrow from one qo to another means that the former is a subset of the latter.
Observe that some arrows are not strictly necessary, but we included them to be more
clear.
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≤2
B ≤1

B ≤r
B

⊑1
B⊑2

B ⊑r
B ⊑de,r

B ⊑fair,r
B

≤2
L(B) ≤1

L(B)
≤r

L(B)

Figure 3.10: Relations between the considered quasiorders



Chapter 4

Illustrative examples

In this chapter we compare, by means of some examples, a number of quasiorders.
Since we considered a large number of preorders on Σ∗, here we present only the
most interesting comparisons. Observe that the contribution given by the qos to the
algorithm presented in [DG20] depends if they are used in the subprocedure BAPrefixes
or in BAPeriods. In the former case, one qo ≤1 is used only during the computation
of DN1

1,i (∅), where N1 ∈ N is the least value such that (DN1+1
1,i (∅))q ≤∀∃

1 (DN1
1,i (∅))q for

all q ∈ Q (see Section 2.5.1). Similarly, one qo ≤2 is used only during the computation
of DN2

2,p(∅), where N2 ∈ N the least value such that (DN1+1
2,p (∅))q ≤∀∃

2 (DN1
2,p(∅))q for all

q ∈ Q and p ∈ F . For this reason, in the examples we omit the execution of the whole
algorithm and we focus either on the computation of DN1

1,i (∅) or DN2
2,p(∅), depending if

we are considering qos for prefixes or for periods.
Let ≤ be a right-monotonic qo on words. We denote by A1,i the function that

associates ≤ with the least N1 ∈ N such that (DN1+1
1,i (∅))q ≤∀∃ (DN1

1,i (∅))q for all q ∈ Q,
i.e. A1,i(≤) = N1. Similarly, we denote by A2,p the function that associates ≤ with
the least N2 ∈ N such that (DN2+1

2,p (∅))q ≤∀∃ (DN2
2,p(∅))q for all q ∈ Q and for all p ∈ F ,

i.e. A2,p(≤) = N2. Observe that A1,i and A2,p return the number of iterations of
respectively BAPrefixes and BAPeriods, and hence we will use them as a metric to
compare the qos.

Let ≤1 and ≤2 two right-monotonic qos used for prefixes (periods). We recall that
if ≤1 ⊆ ≤2, then A1,i(≤2) ≤ A1,i(≤1) (A2,p(≤2) ≤ A2,p(≤1)). We now give practi-
cal examples that show that coarser preorders allow the subprocedures BAPrefixes
and BAPeriods to converge in less iterations.

4.1 Prefixes

Example 4.1.1. Let B be the automaton in Figure 4.1. We compare ≤1
B with

⊑1
B. We remark that that ≤1

B ⊆ ⊑1
B, because ∀u, v ∈ Σ∗, ctxB(u) ⊆ ctxB(v) =⇒

∀(q1, q2) ∈ ctxB(u),∃(q3, q4) ∈ ctxB(v) such that q1 ⪯r q3 and q2 ⪯di q4. This is
due to the fact that ⪯r and ⪯di are reflexive. Table 4.1 illustrates the first four
Kleene’s iterates of the function D1,q0 . Consider (D3

1,q0(∅))q1 . We observe that a ≤1
B bd

doesn’t hold: ctxB(a) = {(q0, q1), (q0, q3)} and ctxB(bc) = {(q0, q1), (q0, q5)} so that
ctxB(a) ⊊ ctxB(bc). Since ∃u ∈ (D3

1,q0(∅))q1 such that ∄v ∈ (D2
1,q0(∅))q1 such that

v ≤1
B u, A1,q0(≤1

B) > 1.
We observe that a ⊑1

B bc: in fact q0 ⪯r q0, q1 ⪯di q1 and q3 ⪯di q5. For this reason,
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Figure 4.1: Automaton used to compare ≤1
B and ⊑1

B.

∀u ∈ (D3
1,q0(∅))q2 , ∃v ∈ (D2

1,q0(∅))q2 such that v ⊑fair,r
B u. The reader can also verify

that a ⊑1
B ad, hence ∀u ∈ (D3

1,q0(∅))q3 , ∃v ∈ (D2
1,q0(∅))q3 such that v ⊑1

B u. Similarly,
e ⊑1

B bc and e ⊑1
B ed, so that ∀u ∈ (D3

1,q0(∅))q5 , ∃v ∈ (D2
1,q0(∅))q5 such that v ⊑1

B u.
This implies that A1,q0(⊑1

B) = 2. It is also possible to show that A1,q0(≤1
B) = 3. This

example shows that for the automaton B, BAPrefixes(B,⊑1
B) converges in strictly

less iterations than BAPrefixes(B,≤1
B).

q0 q1 q2 q3 q4 q5
D0

1,q0(∅) ∅ ∅ ∅ ∅ ∅ ∅
D1

1,q0(∅) {ϵ} ∅ ∅ ∅ ∅ ∅
D2

1,q0(∅) {ϵ} {a} {b} {a} {b} {e}
D3

1,q0(∅) {ϵ} {a, bc} {b} {a, ad} {b} {e, ed, bc}
D4

1,q0(∅) {ϵ} {a, bc} {b} {a, ad, add} {b} {e, ed, edd, bc, bcd}
Table 4.1: The first four Kleene’s iterates of D1,q0 on the automaton in Figure 4.1

Example 4.1.2. Let B be the automaton in Figure 4.2. We compare ≤r
B with

⊑r
B. We remark that ≤r

B ⊆ ⊑r
B, because ∀u, v ∈ Σ∗, postBu (I) ⊆ postBv (I) =⇒ ∀q ∈

postBu (I) ∃p ∈ postBv (I) such that q ⪯di p. This is due to the fact that ⪯di is reflexive.
Table 4.2 illustrates the first five Kleene’s iterates of the function D1,q0 . Consider
(D4

1,q0(∅))q2 . Observe that postBdef (I) = {q2, q5}, while postBab(I) = {q2, q7}, so that
ab ≤r

B def doesn’t hold. For this reason, ∄u ∈ (D3
1,q0(∅))q2 such that u ≤r

B def .
Observing that def ∈ (D4

1,q0(∅))q2 , we conclude that A1,q0(≤r
B) > 3.

On the other hand, ∀p ∈ postBab(I), ∃q ∈ postBdef (I) such that p ⪯di q: in fact
q2 ⪯di q2 and q7 ⪯di q2. This implies ab ⪯di def , and then ∀u ∈ (D4

1,q0(∅))q2 ,



4.1. PREFIXES 51

q0start

q3 q4

q1 q2

q5

q6 q7

a

g

a

b

b
c

d

e

f

f

c

Figure 4.2: Automaton used to compare ≤r
B and ⊑r

B.

∃v ∈ (D3
1,q0(∅))q2 such that v ⊑r

B u. The reader can also verify that ∀u ∈ (D4
1,q0(∅))q5 ,

∃v ∈ (D3
1,q0(∅))q5 such that v ⊑r

B u. This implies that A1,q0(⊑r
B) = 3. It is also possible

to show that A1,q0(≤r
B) = 4. This example shows that BAPrefixes(B,⊑r

B) converges
in strictly less iterations than BAPrefixes(B,≤r

B).

q0 q1 q2 q3 q4 q5 q6 q7
D0

1,q0(∅) ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
D1

1,q0(∅) {ϵ} ∅ ∅ ∅ ∅ ∅ ∅ ∅
D2

1,q0(∅) {ϵ} {a} ∅ {d} ∅ {g} {a} ∅
D3

1,q0(∅) {ϵ} {a} {ab} {d} {de} {g, gc} {a} {ab}
D4

1,q0(∅) {ϵ} {a} {ab, abc, def} {d} {de} {g, gc, gcc, def} {a} {ab}
D5

1,q0(∅) {ϵ} {a} {ab, abc, abcc, def} {d} {de} {g, gc, gcc, gccc, def} {a} {ab}
Table 4.2: The first five Kleene’s iterates of D1,q0 on the automaton in Figure 4.2

Example 4.1.3. Let B be the automaton in Figure 4.3. We compare ⊑r
B with ⊑de,r

B .
We remark that ⊑r

B ⊆ ⊑
de,r
B , because ∀u, v ∈ Σ∗, if ∀p ∈ postBu (I),∃q ∈ postBv (I) such

that p ⪯di q, then it also holds that p ⪯de q. This is due to the fact that ⪯di ⊆ ⪯de (see
Section 2.4). Table 4.3 illustrates the first four Kleene’s iterates of the function D1,q0 .
Consider (D3

1,q0(∅))q2 . We observe that c ⊑r
B ab doesn’t hold: postBc (I) = {q2, q3},

postBab(I) = {q2} and since q2 is not a final state q3 ⪯di q2 doesn’t hold. This implies
that A1,q0(⊑r

B) > 2.
We observe that c ⊑de,r

B ab: in fact q3 ⪯de q2. From q3 starts the infinite (and fair)
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Figure 4.3: Automaton used to compare ⊑r
B and ⊑de,r

B .

trace π0 = q3
d→ q3

d→ · · · in which each state is final. From q2 starts the infinite (and
fair) trace π1 = q2

d→ q3
d→ · · · that matches π0. In particular, for each final state in

π0 there exists a corresponding final state in π1.
It also holds that c ⊑de,r

B cd: postBc (I) = {q2, q3}, postBcd(I) = {q3}, q2 ⪯de q3
and q3 ⪯de q3. This implies that A1,q0(⊑

de,r
B ) = 2. It is also possible to show that

A1,q0(⊑r
B) = 3. This example shows that for the automaton B, BAPrefixes(B,⊑de,r

B )
converges in strictly less iterations than BAPrefixes(B,⊑r

B).

q0 q1 q2 q3
D0

1,q0(∅) ∅ ∅ ∅ ∅
D1

1,q0(∅) {ϵ} ∅ ∅ ∅
D2

1,q0(∅) {ϵ} {a} {c} {c}
D3

1,q0(∅) {ϵ} {a} {c, ab} {c, cd}
D4

1,q0(∅) {ϵ} {a} {c, ab} {c, cd, cdd}
Table 4.3: The first five Kleene’s iterates of D1,q0 on the automaton in Figure 4.3

Example 4.1.4. Let B be the automaton in Figure 4.4. We compare ⊑de,r
B with ⊑fair,r

B .
We remark that ⊑de,r

B ⊆ ⊑fair,r
B , because ∀u, v ∈ Σ∗, if ∀p ∈ postBu (I),∃q ∈ postBv (I)

such that p ⪯de q, then it also holds that p ⪯f q. This is due to the fact that
⪯de ⊆ ⪯f (see Section 2.4). Table 4.4 illustrates the first four Kleene’s iterates of
the function D1,q0 . Consider (D3

1,q0(∅))q2 . We observe that ab ⊑de,r
B def doesn’t hold:

postBab(I) = {q2, q6}, postBdef (I) = {q2, q7} and while q2 ⪯de q2, it is not true that
q6 ⪯de q2 or q6 ⪯de q7. This is due to the fact that the trace π0 = q6

a→ q7
a→ · · ·

contains a final state, and the only trace π1 = q7
a→ q7

a→ · · · that starts from q7 that
can match the a’s contains no final state. This implies that A1,q0(⊑

de,r
B ) > 2.

We observe that ab ⊑fair,r
B def : in fact q6 ⪯f q7. From q6 starts the trace π0,

but since it doesn’t contain one infinite number of final states it is not fair. This
implies that since q7 can match π0 with π1, q6 ⪯f q7. For this reason, ab ⊑fair,r

B def

so that ∀u ∈ (D3
1,q0(∅))q2 , ∃v ∈ (D2

1,q0(∅))q2 such that v ⊑fair,r
B u. The reader

can also verify that g ⊑fair,r
B gaa, g ⊑fair,r

B aba and g ⊑fair,r
B def , hence ∀u ∈

(D3
1,q0(∅))q7 , ∃v ∈ (D2

1,q0(∅))q7 such that v ⊑fair,r
B u. This implies that A1,q0(⊑

fair,r
B

) = 2. It is also possible to show that A1,q0(⊑
de,r
B ) = 3. This example shows that for
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Figure 4.4: Automaton used to compare ⊑de,r
B and ⊑fair,r

B .

the automaton B, BAPrefixes(B,⊑fair,r
B ) converges in strictly less iterations than

BAPrefixes(B,⊑de,r
B ).

q0 q1 q2 q3 q4 q5 q6 q7
D0

1,q0(∅) ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
D1

1,q0(∅) {ϵ} ∅ ∅ ∅ ∅ ∅ ∅ ∅
D2

1,q0(∅) {ϵ} {a} ∅ {d} ∅ {a} ∅ {g}
D2

1,q0(∅) {ϵ} {a} {ab} {d} {de} {a} {ab} {g, ga}
D3

1,q0(∅) {ϵ} {a} {ab, abc, def} {d} {de} {a} {ab} {g, ga, gaa, aba, def}
D4

1,q0(∅) {ϵ} {a} {ab, abc, abcc, {d} {de} {a} {ab} {g, ga, gaa, gaaa,
def, defc} aba, abaa, def, defa}

Table 4.4: The first four Kleene’s iterates of D1,q0 on the automaton in Figure 4.4

4.2 Periods
Example 4.2.1. Let B be the automaton in Figure 4.5. We compare ≤2

B with
⊑2

B. We remark that ≤2
B ⊆ ⊑2

B, because ∀u, v ∈ Σ∗, if ctxB(u) ⊆ ctxB(v) and
ctxF

B (u) ⊆ ctxF
B (v) then ∀(q1, q2) ∈ ctxB(u) ∃(q3, q4) ∈ ctxB(v) such that q1 ⪯b q3

and q2 ⪯di q4. In particular, consider q3 = q1 and q4 = q2. Furthermore, q1
u
↣ q2

implies (q1, q2) ∈ ctxF
B (u), so that (q3, q4) ∈ ctxF

B (v). Table 4.5 illustrates the first
three Kleene’s iterates of the function D2,q6 . Consider (D2

2,q6(∅))q7 . We observe that
b ≤2

B de doesn’t hold: ctxB(b) = {(q1, q2), (q6, q7)} and ctxB(de) = {(q3, q5), (q6, q7)}.
For this reason, ∃u ∈ (D2

2,q6(∅))q7 such that ∄v ∈ (D1
2,q6(∅))q7 such that v ≤2

B u. This
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Figure 4.5: Automaton used to compare ≤2
B and ⊑2

B.

implies that A2,q6(≤2
B) > 1.

We observe that b ⊑2
B de. This is due to the fact that q1 ⪯b q3, q2 ⪯di q5, q6 ⪯b q6

and q7 ⪯di q7. For this reason, ∀u ∈ (D2
2,q6(∅))q7 , ∃v ∈ (D1

2,q6(∅))q7 such that v ⊑2
B u.

This implies that A2,q6(⊑2
B) = 1. It is also possible to show that A2,q6(≤2

B) = 2. This
example shows that for the automaton B, BAPeriods(B, ≤2

B) converges in strictly
less iterations than BAPeriods(B,⊑2

B).

q0 q1 q2 q3 q4 q5 q6 q7 q8
D0

2,q6(∅) ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
D1

2,q6(∅) ∅ ∅ ∅ ∅ ∅ ∅ ∅ {b} {d}
D2

2,q6(∅) ∅ ∅ ∅ ∅ ∅ ∅ ∅ {b, ba, de} {d}
D3

2,q6(∅) ∅ ∅ ∅ ∅ ∅ ∅ ∅ {b, ba, baa, de, dea} {d}
Table 4.5: The first three Kleene’s iterates of D2,q6 on the automaton in Figure 4.5



Chapter 5

Conclusion

We have defined four suitable different quasiorders on words that are based on a
number of simulation relations. We also proved that the pairs (⊑1

A,⊑2
A), (⊑r

A,⊑2
A),

(⊑de,r
A ,⊑2

A) and (⊑fair,r
A ,⊑2

A) can be plugged in the framework described in [DG20] in
order to solve the language inclusion problem for ω-regular languages. It turns out
that the newly defined quasiorders are coarser than the state-based, while being finer
than the syntactic ones. By means of some examples we have shown the advantage of
using coarser relations in the algorithm to check the language inclusion. In particular,
there is evidence that coarser relations lead to a smaller number of iterations in the
procedures BAPrefixes and BAPeriods.

We believe that, even if we considered numerous different simulation relations
on states, many more could be used to build new quasiorders on words. The most
promising continuation is to embed delayed and fair simulations in qos used in the
procedure BAPeriods. We also remark that even though the k-lookahead simulations
and the trace inclusions did not lead to suitable qos with the straightforward approach,
this does not mean that they cannot be used in some brighter ways to define right-
monotonic relations. We mention that there are a lot of well-known simulations, and
possibly each one can be used to define suitable coarser qos on words. For example, the
multipebble and the fixed-words simulations [CM17] are coarser than the simulations
that we used, but finer than the trace inclusions.

The natural extension of this work would be to provide an implementation for the
framework. This would allow us to compare the practical performance of the algorithm
using different pairs of qos. In fact, we used as primary metric for measuring the
performance the number of iterations of the procedures BAPrefixes and BAPeriods,
while in practice several factors impact on the efficiency of the algorithm. In the
past, algorithms based on simulations achieved excellent results, for example in [BP13]
they use the bisimulation up to conguence in order to check the inclusion between
the languages of two FAs. They devise an optimisation of the classical algorithm by
Hopcroft and Karp [HK73], and their approach exponentially improves the performance
of the antichain algorithm [DW+06]. We believe that in the same way they have
been able to achieve such a valuable result using simulations, the [DG20]’s framework
combined with the simulation-based quasiorders, if properly implemented, can lead to
a tool that may even compete with the existing state of the art implementations to
solve the language inclusion problem for ω-regular languages.
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