Simulation-based Inclusion Checking
Algorithms for w-Languages

Francesco Parolini
23 July, 2020

UNIVERSITA

DEGLI STUDI
DI PADOVA

Presentation

Candidate: Francesco Parolini

Supervisor: Prof. Francesco Ranzato

Co-supervisor: Prof. Pierre Ganty, IMDEA Software
Institute, Madrid

m PhD. Student: Kyveli Doveri, IMDEA Software Institute,
Madrid

s

The Language Inclusion Problem

Definition (Language Inclusion Problem)

Let L; and Ly be two languages. The language inclusion
problem consists in deciding whether L; C L5 holds or not.

UNIVERSITA

Characteristics (15 oS

m Whether the problem is computable or not depends on the
class of the languages

m Also if it turns out to be computable, it is usually an hard
problem

Applications
m Model checking
m Compilers construction

m Automata-based Verification

s

w-languages

Definition (w-language)
An w-language L is a set of strings of infinite length.

Examples of words of infinite length:
abbb--- = ab”

babbaababab - - - = babba(ab)”

s

w-languages

Definition (w-language)
An w-language L is a set of strings of infinite length.
Examples of words of infinite length:

abbb--- = ab¥

babbaababab - - - = babba(ab)”

Our focus is on w-regular languages.

s

Buchi automata

A Biichi automaton is a tuple B = (Q, 4, {i}, F)

@

Buchi automata

A Biichi automaton is a tuple B = (Q, 4, {i}, F)

a./b a

a e

Buchi automata

A Biichi automaton is a tuple B = (Q, 4, {i}, F)

a./b a

a
start — e

Buchi automata

A Biichi automaton is a tuple B = (Q, 4, {i}, F)

a./b a

a
start —

B e

DI PADOVA

A trace over the word ajasaz...:

QOgChngg“'

DI PADOVA

A trace over the word ajasaz...:
a a a.
Q> qr > g
An initial trace over the word ajasas...:

ETE T

s

UNIVERSITA
DEGLI STUDI

DI PADOVA

A trace over the word ajasaz...:
a a a.
Q> qr > g
An initial trace over the word ajasas...:

EE

A fair trace over the word ajasas...:

Traces

An initial and fair trace over aba“:

a,b a

a
start —

Traces

An initial and fair trace over aba“:

a,b a

a
start —

Traces

An initial and fair trace over aba“:

a,b a

a
start —

Traces

An initial and fair trace over aba“:

a,b a

a
start —

Traces

An initial and fair trace over aba“:

a,b a
a
start —

.a . b
| —> 11—

Traces

An initial and fair trace over aba“:

a,b a

a
start —

Traces

An initial and fair trace over aba“:

a,b a
a
start —

.a . b . a
| — 11— 11—

Traces

An initial and fair trace over aba“:

a,b a

a
start —

Traces

An initial and fair trace over aba“:

a,b a

a
start —

Traces

An initial and fair trace over aba“:

a,b a

a
start —

An initial and fair trace over aba“:

a,b a
a
start —
a b a

The language of a Biichi automaton

The language recognized by a Biichi automaton B is:

L(B) = {w | there is an initial and fair trace over w}

a
start —

L(B) = {a%, ba*,aba”, bba”,...} = (a+ b)*a”

s e

w—regular languages

Definition (w-regular language)
The class of languages recognized by Biichi automata is called

w-regular languages.

Applications
m LTL as Biichi automata
m Automata-based model checking

I et

Deciding the Language Inclusion

m Languages are not finite, we can't just compare them

Deciding the Language Inclusion

m Languages are not finite, we can't just compare them
m Abstract Interpretation

m Static program analysis
m Giving up precision for computability

s

Deciding the Language Inclusion

We started from the “Doveri-Ganty” framework for checking the
language inclusion, which relies on Abstract Interpretation
techniques.

A ultimately periodic word:

abc(de)”

A ultimately periodic word:

abc(de)”

We define:

L2 {(uv) | w” e L)

A ultimately periodic word:

abc(de)”

We define: .
I ={(u,v) | uv” €L}

Then, one key observation is:

LiCly<1I,CI,

B ha

A ultimately periodic word:

abc(de)”

We define: .
I ={(u,v) | uv” €L}

Then, one key observation is:
L1 - L2 < IL1 - IL2
Let <1, <, be two preorders on words.

A
p<ix<(IL) ={(s,t) | w,v) e l,u<ss N v <ot}

B ha

Let <1, <, be two preorders on words that meet a list of
requirements related to computability and completeness.

L C L+~ p§1><§2(IL1) - IL2

p§1><§2(lL1)

Observation: usually when abstracting one object we gain
decidability, but here the abstraction goes from one infinite set
(IL,) to another infinite set... Why?

UNIVERSITA
P

Gaining decidability (s i

We can extract from the abstraction p<,x<,(/1,) a finite set, say
T, such that:

L1 C Ly <:>V(U, V) e T,uwel,

Algorithm to solve L; C L,

DI PADOVA

m They give BAInc, algorithm to solve L; C L,
Computes T
Checks if Y(u,v) € T,uv¥ € L,

m BAInc is parametrized by <;, <,
C

2 — 1 — r
<B <5 =B

N

N
N
N

N

UNIVERSITA

Algorithm to solve [; C L[, i St

DI PADOVA

m They give BAInc, algorithm to solve L; C L,
Computes T
Checks if Y(u,v) € T,uv¥ € L,

m BAInc is parametrized by <;, <,
C

2 - 1 — r
< <L <

N

N
N
N

N

My task: to define new preorders <;, <o

s e

SimUIationS : DI PADOVA

Behavioural relations

Intuitively, one state is simulated by another if the second can
match all the moves of the first

Fundamental in Process Calculi

There are many known algorithms to compute simulations

s

The Game of Simulation

C

(@O-®

start —

The Game of Simulation

Spoiler

FORO

start —

Duplicator

The Game of Simulation

Spoiler

FORO

start —

Duplicator

The Game of Simulation

Spoiler

B0

start —

Duplicator

The Game of Simulation

Spoiler

B0

start —

Duplicator

The Game of Simulation

Spoiler

B0

start —

Duplicator

The Game of Simulation

Spoiler

B0

start —

Duplicator

The Game of Simulation

Spoiler

B0

start —

Duplicator

The Game of Simulation

Spoiler

B0

start —

Duplicator

The Game of Simulation

Spoiler

B0

start —

Duplicator

The Game of Simulation

Spoiler

()
a /" q1 <9 g3

start — : <di

Duplicator

| started from:

u Cp v <= for each state p such that i 5,

exists a state g such that i ~ g and p <% ¢

C

, @@

start — Cc

d

OO0

| started from:

u Cp v <= for each state p such that i 5,

exists a state g such that i ~ g and p <% ¢

C

, @@

start — Cc

d

OO0

| started from:

u Cp v <= for each state p such that i 5,

exists a state g such that i ~ g and p <% ¢

C

, @@

start — Cc

d

OO0

I ADOVA

| started from:

u Cp v <= for each state p such that i 5,

exists a state g such that i ~ g and p <% ¢

C

, @@ acpd

start — Cc

d

OO0
I et

New preorders

Generalization using different simulations:

de,r
ml,

§<de

UNIVERSITA

New preorders s oo

Generalization using different simulations:

- |:de,r

Bz

UNIVERSITA

New preorders s oo

The context of a word:

C

, ctx(b) = {(q1, @), (6. 95)}

a
(@)
Generalization using pairs of states:
1
mly
2
mly

I ma

start —

DI PADOVA

m Proved a list of requirements related to computability and
completeness
computability
right-monotonicity (v < v = uw < vw)
being a well-quasiorder (for each infinite sequence {x;};en,
di,ji<j A x<xj)
p§1><§2(/l-2) = /L2
m |dentified which pairs are suitable for the framework

1 2
EB; EB
r 2
EB; EB
de,r 2
Efair,r E2
=B y =B

I ma

Other considered simulations

m K-lookahead simulations

m Trace inclusions
m “K-delayed” simulations

Other considered simulations

m K-lookahead simulations
m Trace inclusions
m “K-delayed” simulations
The relations on words derived from these do not meet the

requirements.

s

Taxonomy of the preorders

Why bother?

Simulations and the language inclusion problem:

Why bother? e

Simulations and the language inclusion problem:
m 2010: Abdulla, P.A. et al. When simulation meets antichains.

Why bother?

Simulations and the language inclusion problem:
m 2010: Abdulla, P.A. et al. When simulation meets antichains.

m 2011: Abdulla, P.A. et al. Advanced Ramsey-based Biichi
automata inclusion testing.

Why bother?

Simulations and the language inclusion problem:
m 2010: Abdulla, P.A. et al. When simulation meets antichains.

m 2011: Abdulla, P.A. et al. Advanced Ramsey-based Biichi
automata inclusion testing.

m 2013: Bonchi, F. and Pous, D. Checking NFA equivalence
with bisimulations up to congruence.

I war

Why bother? UNrvarsiT

Simulations and the language inclusion problem:
m 2010: Abdulla, P.A. et al. When simulation meets antichains.
m 2011: Abdulla, P.A. et al. Advanced Ramsey-based Biichi
automata inclusion testing.
m 2013: Bonchi, F. and Pous, D. Checking NFA equivalence
with bisimulations up to congruence.

m 2017: Mayr, R. and Clemente, L. Efficient reduction of
nondeterministic automata with application to language
inclusion testing.

I war

What's next

Thanks for your attention

