
HAL Id: tel-04638994
https://theses.hal.science/tel-04638994

Submitted on 8 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Static Analysis for Security Properties of Software by
Abstract Interpretation

Francesco Parolini

To cite this version:
Francesco Parolini. Static Analysis for Security Properties of Software by Abstract Interpretation.
Computer Science [cs]. Sorbonne Université, 2024. English. �NNT : 2024SORUS086�. �tel-04638994�

https://theses.hal.science/tel-04638994
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT DE SORBONNE UNIVERSITÉ

Spécialité
Informatique

École doctorale Informatique, Télécommunications et Électronique (Paris)

Présentée par

Francesco Parolini
Pour obtenir le grade de

DOCTEUR de SORBONNE UNIVERSITÉ
Sujet de la thèse:

Static Analysis for Security Properties of
Software by Abstract Interpretation

Thèse soutenue le 26 Juin 2024 devant le jury composé de:
Antoine Miné Sorbonne Université & CNRS, France Directeur de thèse
Isabella Mastroeni Università di Verona, Italie Rapportrice
Thomas Jensen Université de Rennes & INRIA, France Rapporteur
Antoine Genitrini Sorbonne Université & CNRS, France Président du jury
Nathalie Sznajder Sorbonne Université & CNRS, France Examinatrice
Pierre Ganty IMDEA Software Institute, Spain Examinateur
Sébastien Bardin CEA, List, Université Paris-Saclay, France Examinateur

Abstract

This thesis aims at developing and implementing formal techniques that can prove the absence of security-related
vulnerabilities in software systems.We focus our attention on two notable cases: Regular Expression Denial of Service
attacks (ReDoS), and exploitable runtime errors. For each case, we first study the theoretical framework to precisely
characterize the vulnerability that we are considering. Then, we develop sound, automatic analyses, which can prove
the absence of the vulnerabilities without relying on user interaction or annotations. We pair our theoretical results
with practical implementations, which we consistently test on real-world examples.

Modern programming languages often provide functions to manipulate regular expressions in standard libraries.
If they offer support for advanced features, the matching algorithm has an exponential worst-case time complexity:
for some so-called vulnerable regular expressions, an attacker can craft ad hoc strings to force the matcher to exhibit
the exponential behaviour and perform a ReDoS attack. In the first part of this thesis, we put forward a novel tree
semantics for the regular expression matching procedure that precisely characterizes the behaviour of real-world
matching engines. By leveraging such a characterization, we formally define ReDoS vulnerabilities in terms of the
size of the matching trees. Then, we propose a sound analysis which extracts an overapproximation of the set of
words that can make the matching engine exhibit the exponential behaviour. We implemented our analysis in a tool
called RAT, and by comparing it to seven other detectors on a large set of 74,669 regular expressions, we found that
RAT is the only detector that does not raise false negatives. Furthermore, RAT is faster, often by orders of magnitude,
than most other tools.

Runtime errors that can be triggered by an attacker are sensibly more dangerous than others, as they not only
result in program failure, but can also be exploited and lead to security breaches. In the second part of this thesis, we
focus our attention on developing a technique able to rule out the existence of runtime errors that can be triggered by
an attacker. First, we introduce a novel property called safety-nonexploitability, which precisely characterizes the set
of programs whose correctness cannot be altered by an external user. Then, we give an alternative characterization
of safety-nonexploitability in terms of tainted (i.e., user-controlled) variables. By relying on this characterization, we
propose an analysis by abstract interpretation which combines a semantic taint analysis with a numeric analysis.
The numeric invariants inferred by the numeric domain enhance the precision of the taint analysis. To assess the
usefulness of our technique, we implemented our analysis for a large subset of C. We compared the regular analyzer
with the modified nonexploitability version on a large set of 77 real-world programs taken from the Coreutils package,
to which we added 13,261 test cases taken from the Juliet test suite. In our experiments, we found that our framework
can consistently prove that more than 70% of the alarms raised by the regular analyzer are not exploitable.

iii

Résumé

Cette thèse vise à développer et à mettre en œuvre des techniques formelles capable de prouver l’absence de vulnéra-
bilités liées à la sécurité dans les systèmes logiciels. Nous concentrons notre attention sur deux cas notables: les
attaques Déni de Service liées aux Expressions Régulières (ReDoS), et les erreurs à l’exécution qui peuvent être dé-
clenchées par un attaquant. Pour chaque cas, nous étudions d’abord le cadre théorique pour caractériser précisément
la vulnérabilité que nous considérons. Ensuite, nous développons des analyses sûres et automatiques, qui peuvent
prouver l’absence de vulnérabilités sans requérir d’interaction ou d’annotations de l’utilisateur.

Les langages de programmation modernes fournissent souvent des fonctions permettant de manipuler les expres-
sions régulières. Lorsqu’elles offrent une prise en charge de fonctionnalités avancées, l’algorithme de correspondance
a une complexité en temps dans le pire des cas exponentielle: pour certaines expressions régulières dites vulnérables,
un attaquant peut alors créer des chaînes ad hoc pour forcer le moteur de recherche d’expressions régulières à
présenter un comportement exponentiel et ainsi réaliser une attaque ReDoS. Dans la première partie de cette thèse,
nous proposons une nouvelle sémantique pour la procédure de correspondance des expressions régulières qui
caractérise précisément le comportement des moteurs de recherche d’expressions régulières réels. En exploitant
une telle caractérisation, nous définissons formellement les vulnérabilités ReDoS en termes de taille des arbres
de correspondance. Ensuite, nous proposons une analyse sûre qui extrait une surapproximation de l’ensemble des
mots pouvant entraîner un comportement exponentiel du moteur de recherche d’expressions régulières. Nous avons
implémenté notre analyse dans un outil appelé RAT, et en le comparant à sept autres détecteurs sur un large ensemble
de 74,669 expressions régulières, nous avons constaté que RAT est le seul détecteur à ne pas générer de faux négatifs.
De plus, RAT est plus rapide, souvent de plusieurs ordres de grandeur, que la plupart des autres outils.

Les erreurs à l’exécution pouvant être déclenchées par un attaquant sont sensiblement plus dangereuses que
d’autres, car elles entraînent non seulement un échec du programme, mais peuvent également être exploitées et
conduire à des violations de sécurité. Dans la deuxième partie de cette thèse, nous concentrons notre attention sur
le développement d’une technique capable de prouver l’absence d’erreurs à l’exécution pouvant être déclenchées
par un attaquant. Nous introduisons une nouvelle propriété appelée non-exploitabilité, qui caractérise précisément
l’ensemble des programmes dont la correction ne peut pas être altérée par un utilisateur externe. Ensuite, nous
donnons une caractérisation alternative de la non-exploitabilité en termes de variables teintées (c’est-à-dire contrôlées
par l’utilisateur). En nous appuyant sur cette caractérisation, nous proposons une analyse par interprétation abstraite
qui combine une analyse sémantique de teinte avec une analyse numérique. Les invariants numériques déduits par
le domaine numérique améliorent la précision de l’analyse de teinte. Pour démontrer l’utilité de notre technique,
nous avons implémenté notre analyse pour un large sous-ensemble de C. Nous avons comparé l’analyseur original
avec la version modifiée par la non-exploitabilité sur un grand ensemble de 77 programmes réels extraits du package
Coreutils, auxquels nous avons ajouté 13,261 cas de tests issus de la suite de tests Juliet. Dans nos expériences,
nous avons constaté que notre analyse peut systématiquement prouver que plus de 70% des alarmes soulevées par
l’analyseur original ne sont pas exploitables.

v

Publications

First-author publications

Conference papers

Sound Static Analysis of Regular Expressions for Vulnerabilities to Denial of Service Attacks
Francesco Parolini and Antoine Miné
in Theoretical Aspects of Software Engineering (TASE) 2022

Sound Abstract Nonexploitability Analysis
Francesco Parolini and Antoine Miné
in Verification, Model Checking, and Abstract Interpretation (VMCAI) 2024

Journal papers

Sound Static Analysis of Regular Expressions for Vulnerabilities to Denial of Service Attacks
(Extended Version)
Francesco Parolini and Antoine Miné
in Science of Computer Programming 2023

Other publications

Inclusion Testing of Büchi Automata Based on Well-Quasiorders
Kyveli Doveri, Pierre Ganty, Francesco Parolini, Francesco Ranzato
in International Conference on Concurrency Theory (CONCUR) 2021

vii

Mopsa-C: Improved Verification for C Programs, Simple Validation of Correctness Witnesses
(Competition Contribution)
Raphaël Monat, Marco Milanese, Francesco Parolini, Jérôme Boillot, Abdelraouf
Ouadjaout, Antoine Miné
in Tools and Algorithms for the Construction and Analysis of Systems (TACAS) 2024

Acknowledgments, Remerciements
& Ringraziamenti

I would like to start by thanking Isabella Mastroeni and Thomas Jensen for reviewing this
manuscript. I would also like to thank Antoine Genitrini, Nathalie Sznajder, Pierre Ganty,
and Sébastien Bardin for agreeing to be part of the PhD jury. Thanks to everyone for the
comments and the interesting discussions about my work.

Merci Antoine de m’avoir accepté comme doctorant et de m’avoir donné d’innombrables
conseils, orientations et enseignements. Tu as toujours trouvé le temps pour de longues
discussions, et tes notes et tes relectures ont toujours été extrêmement détaillées et précises.
Sans ton engagement, je n’aurais pas pu terminer cemanuscrit. Merci d’avoir été un directeur
de thèse si exceptionnel.

Grazie a Francesco Ranzato per avermi fatto appassionare all’analisi statica. Il suo corso
di Verifica del Software ha sicuramente cambiato il corso della mia vita (non starei scrivendo
questi ringraziamenti altrimenti!), ed è stato un piacere lavorare con lei durante la mia tesi
magistrale. Non è facile trovare professori che facciano appassionare gli studenti a quello
che insegnano, e io sono stato fortunato.

Grazie a Gregorio Piccoli per avermimostrato il mondo degli interpreti e dei linguaggi fun-
zionali. Lo stage chemi ha propostomi ha fatto innamorare dei linguaggi di programmazione,
e questo amore continua tutt’oggi.

Thanks to Abdelraouf, Matthieu, Raphaël, David, Guillaume, Marco, and Milla for be-
ing part of the MOPSA team. It has been a pleasure working with such a talented group
of individuals. Thanks to Kyveli for leading the research project in the first paper I ever
published.

Thanks to my (ex) colleagues and friends at Amazon: Pauline, Vlad, Stefan, Horia, Daniel
T., Sandro, Evan, Franco, Djordje, Claudia, Norine, Philipp, and Sarek. Thanks to Ilina and
Daniel for being such great bosses and functional programming enthusiasts.

Merci à tous les doctorants de la salle 303: Jules, Martin, Mathieu, Mamy, Mohamed,
Keanu et Sébastien. Thanks also to the PhD students from our sister lab at ENS: Jérôme,

Charles, Josselin, Valentin, Ignacio, Albin, and Patricio. Grazie agli altri ricercatori e amici,
Alessio, Adam,Marco C., Alessandro e Gabriele. Together, we spent many fun Parisian nights,
and you all really made my stay in France special. I’m sure we will meet again at Dimitry’s.

Thanks to the friends that I met along the away abroad, in particular Maria and Alvaro.
You made me feel at home, even thousands of kilometers away. Grazie a tutti i miei amici
incontrati all’università: Alessandro, Paolo, Andrea, Alessio, Simone, Ciprian, e Linpeng.
Grazie a Denis per avermi convinto a trasferirmi a Parigi e avermi accompagnato in questa
avventura. Grazie a tutte le altre persone speciali che mi hanno accompagnato in questo
viaggio: Marta, Matteo, Silvia, Dario, Gualtio, Alessio, Valerio, e Federica. Ci siete stati fin
dall’inizio, e so che ci sarete anche in futuro.

Thanks to all the people that I forgot to thank.
Grazie a tutta la mia famiglia, in particolare a mia zia Paola, mia cugina Anna, nonna

Domenica, zio Giorgio, e ai miei genitori Alba e Gian. Senza di voi, non avrei potuto fare
nulla.

Ai miei genitori

Contents

I Background 1

1 Introduction 3
1.1 Approaches to reliable software 4
1.2 The challenges of cybersecurity 6
1.3 Contributions and outline . 6

1.3.1 Verification of security properties for regular expressions . 7
1.3.2 Verification of security properties for programs 7
1.3.3 Contributions . 8

2 Mathematical Background 11
2.1 Basics . 11
2.2 Order theory . 13
2.3 Fixpoints . 16

II Verification of Security Properties for Regular Expressions 21

3 Regular Expressions and Automata 23
3.1 Formal languages . 23
3.2 Regular expressions . 24
3.3 Finite automata . 28
3.4 Conclusion . 38

4 Regular Expression Denial of Service Vulnerabilities Analysis 39
4.1 Motivation . 40
4.2 Background . 42

xi

xii CONTENTS

4.2.1 Regular expression matching in programming languages . 42
4.2.2 ReDoS vulnerabilities . 44
4.2.3 ReDoS detection . 45
4.2.4 Backtracking regular expression matching 46

4.3 Regular expression matching semantics 48
4.4 ReDoS vulnerabilities detection 54
4.5 Analysis extensions . 61

4.5.1 Backreferences . 61
4.5.2 Lookaround assertions . 62
4.5.3 Superlinear matching analysis 63

4.6 Related work . 64
4.6.1 Semantics-based static ReDoS detection 65
4.6.2 Dynamic ReDoS detection 66
4.6.3 Heuristics-based static ReDoS detection 67
4.6.4 ReDoS mitigation . 68
4.6.5 Regular expression derivatives 68

4.7 Conclusion . 69

5 ReDoS Analysis Experimental Evaluation 71
5.1 Experimental setup . 71
5.2 Precision comparison . 73
5.3 Performance comparison . 75
5.4 Discussion . 76
5.5 Conclusion . 78

III Verification of Security Properties for Programs 81

6 Static Analysis by Abstract Interpretation 83
6.1 Syntax . 83
6.2 Semantics . 85

6.2.1 Expressions semantics . 86
6.2.2 Reachability semantics . 87
6.2.3 Trace semantics . 90

6.3 Program properties . 92

CONTENTS xiii

6.3.1 Trace properties . 92
6.3.2 Hyperproperties . 94
6.3.3 Undecidability of semantic program properties 99

6.4 Static analysis and abstract interpretation 99
6.4.1 Concrete and abstract elements 101
6.4.2 The best abstraction: Galois connections 104
6.4.3 Static analysis and abstract domains 107
6.4.4 Static analysis tools based on abstract interpretation 123

6.5 Conclusion . 125

7 Sound Abstract Safety Nonexploitability Analysis 127
7.1 Introduction . 128
7.2 Motivation . 129
7.3 Taint analysis . 131
7.4 Syntax . 132
7.5 Semantics . 133
7.6 Safety-nonexploitability . 137
7.7 Taint concrete semantics . 142
7.8 Taint abstract semantics . 149
7.9 Related work . 159

7.9.1 Secure information flow 159
7.9.2 Hyperproperties verification 160
7.9.3 Security properties verification by abstract interpretation . 161
7.9.4 Slicing . 163
7.9.5 Errors classification . 163

7.10 Conclusion . 164

8 Safety Nonexploitability Experimental Evaluation 167
8.1 Implementation . 167
8.2 Performance and precision evaluation 169
8.3 Discussion . 172
8.4 Conclusion . 172

xiv CONTENTS

IV Conclusion & FutureWork 175

9 Conclusion & FutureWork 177

Bibliography 180

A Proofs 213

B RAT Implementation Details 229

C Interval analysis helper functions 235

List of Figures 237

List of Tables 239

List of Definitions, Theorems, Lemmas, and Corollaries 241

List of Examples 245

Part I

Background

1

Chapter 1

Introduction

Software systems are nowadays ubiquitous. Programs control safety-critical sys-
tems such as airplanes [1], emergency systems of nuclear power plants [2], and
car engines [3]. Furthermore, businesses use software to gather possibly sensitive
data from their users, and they are legally obliged to guarantee the secrecy of
such information [4]. The growing complexity of software systems progressively
increases the likelihood for programmers to introduce software errors. Programs
with bugs can lead to huge economic losses [5, 6, 7], and, in some cases, they can
even result in loss of human lives [8, 9].

Recent advancements in artificial intelligence saw the rise of large language
models (LLMs). These systems are capable of writing software starting from a
specification written in natural language. Conversational agents such as OpenAI’s
ChatGPT [10] and Google’s Gemini [11] have been attracting a lot of attention from
the public recently, and their use is becoming increasingly integrated into people’s
everyday lives. Some LLMs are specifically designed to write computer programs:
Github Copilot [12] is an AI-based coding assistant that integrates into IDEs and
assists the programmer during the development process. Github Copilot has cur-
rently over 1 million paid subscribers in over 37,000 organizations [13]. However,
there is growing evidence that AI-generated code introduces at least as many
bugs as programmers [14, 15, 16, 17]. In this scenario, it is paramount to employ
techniques to find software errors early in the development cycle.

3

4 CHAPTER 1. INTRODUCTION

1.1. Approaches to reliable software

In order to find bugs before deploying an application, programmers use software
engineering techniques such as testing. The correct behaviour of a program is
tested for a finite–and often relatively small–number of inputs, and assertions in
the test suite check the functional correctness of a piece of code. As every test case
has to be manually written by the programmer, this technique is time-consuming.
Furthermore, exhaustively testing all the possible program inputs is not feasible, so
that the correctness is checked only for a small, hopefully representative, portion
of the input space. As Dijkstra famously remarked “testing can be quite effective
for showing the presence of bugs, but is hopelessly inadequate for showing their
absence” [18].

During recent years, language-based techniques to enhance software reliability
have begun to gain some traction. Strong type systems are nowadays common, and
widely-used modern programming languages such as Scala [19], Rust [20], and
Swift [21] adopt a strict typing discipline. Relevant properties such as null-safety
(i.e., the absence of null-pointer dereferences) can be guaranteed at compile-time
by strong type systems, and their use is increasingly popular. Another significant
example of property that can be guaranteed at compile-time ismemory safety in
non-garbage collected languages, which has been recently popularized by the Rust
programming language. While these strong type systems prevent some failures to
occur, they cannot completely rule out the existence of all errors, which is beyond
the scope and capabilities of those systems.

Although testing and a strong typing discipline can prevent some errors to
occur, they cannot ultimately eliminate all bugs. On the other hand, formal methods
provide strongmathematical guarantees about the correctness of software. By rely-
ing on a precise mathematical model of the programs’ behaviour, formal methods
can reason about the semantics of software systems, and this makes it possible to
prove properties of programs. However, Rice’s undecidability theorem [22] states
that all non-trivial program properties are undecidable, and poses a major chal-
lenge to program verification. To elude Rice’s theorem, formal method techniques
sacrifice either completeness (all true facts are provable), soundness (the conclusions
about programs are always correct under suitable explicitly stated hypotheses), or
automation (proofs are carried out by a computer).

1.1. APPROACHES TO RELIABLE SOFTWARE 5

Deductive methods produce proofs of correctness, but ultimately require user
interaction. This approach makes it possible to prove strong properties of pro-
grams, such as functional correctness with respect to a specification. Even if proof
assistants help the user with hints and strategies to carry out a proof, this process
cannot be ultimately fully automatized.

Symbolic execution techniques perform an abstract execution of programs by
assuming symbolic variables for the unknown values, and propagate them during
the analysis. The collected constraints are precise, and canbe solved to determine if
an arbitrary assertion is violated (e.g., absence of runtimeerrors). Since thenumber
of feasible execution paths grows exponentiallywith the size of programs, symbolic
execution techniques have sometimes to trade soundness for performance [23].

Model checking restricts the verification problem to decidable fragments of
languages [24] and produces correctness proofs automatically. Clarke et al. [25]
apply bounded model checking to prove the correctness of ANSI-C programs. Their
approach unwinds loops and function calls up to a threshold, which implies that
behaviours beyond such a threshold are not considered.

Abstract interpretation [26] is a formal technique to automatically prove the
correctness of software systems. Abstract interpreters, i.e., analyzers that rely on
abstract interpretation theory, run an abstract execution on programs and collect
an overapproximation of the reachable states. In a single run, they consider all
concrete executions, to which they necessarily add some spurious, hopefully irrel-
evant, ones. While analyses derived from the abstract interpretation framework
are not complete (i.e., they can present false positives), once the analyzer classifies a
program as safe, then there is a strong mathematical guarantee about the correct-
ness of the system (i.e., false negatives are forbidden). Abstract interpreters target
specific kinds of formally defined undesirable behaviours, and can only ensure
the absence of these errors (e.g., index out-of-bounds, null pointer dereferences).
During the years, many static analyzers based on abstract interpretation theory
have been developed. For example, the ASTRÉE [27] analyzer is a commercial static
analysis tool specifically designed to verify the correctness of large embedded
safety-critical software written in C. The analyzer was able to prove the absence of
runtime errors in the flight control codes of the Airbus fly-by-wire systems. More
recently, the FRAMA-C abstract interpretation plugin has been used to analyze

6 CHAPTER 1. INTRODUCTION

software that manages nuclear power plants [28].

1.2. The challenges of cybersecurity

A particularly interesting class of software flaws is security-related vulnerabilities. In
non-safety critical applications, security vulnerabilities are often considered more
dangerous than runtime errors, despite a large class of security breaches being
caused by such errors [29]. For instance, banking applications employ an extensive
security audit process by cybersecurity experts to ensure that sensible financial
data is not leaked to unauthorized users [30, 31, 32]. Numerous companies sell
cybersecurity-related services, universities offer degrees in security, and virtually
every country’s government has established agencies specifically dedicated to
addressing cyber threats.

In order to find security vulnerabilities early in the development process, a
software system is tested with well-established techniques such as penetration
testing [33, 34] and code auditing by security experts. Nevertheless, similarly to run-
time errors, these techniques cannotmathematically guarantee that an application
is secure, making formal methods the only viable option for formally ensuring
security.

One of the main challenges that security poses to formal methods is mathemat-
ically defining when an application is secure. While programs that present classic
runtime failures such as null pointer dereferences and index out-of-bounds are
clearly wrong, it is more difficult to semantically classify programs as secure or not.
The reason is that security ranges over a wide spectrum of high-level properties,
including confidentiality (absence of secret information leakage), integrity (data re-
mains unaltered during storage, transmission, and processing), and authentication
(the entities that interact with the system can be reliably identified).

1.3. Contributions and outline

In this thesis, we put forward techniques based on formal reasoning to detect
security-related vulnerabilities. The analyses we propose are semantic, namely
grounded in the mathematical description of software systems’ behaviour. By

1.3. CONTRIBUTIONS AND OUTLINE 7

reasoning on the concrete semantics, the techniques we propose are able to prove
the absence of security-related vulnerabilities. Part I gives an introduction to this work,
and in particular in Chapter 2 we provide the mathematical background used in
the rest of this thesis. In the remainder of this section, we outline the organization
of the rest of this manuscript.

1.3.1. Verification of security properties for regular expressions

In Part II of this manuscript, we focus our attention on proving the absence of Reg-
ular Expression Denial of Service attacks (ReDoS), a particular type of algorithmic
complexity attacks [35]. Matching engines in languages such as Python, JavaScript,
and Java employ algorithms with exponential worst-case time complexity in the
length of the string. An attacker can craft ad-hoc strings to exploit such vulnera-
bilities and make the matching engine exhibit the exponential behaviour. ReDoS
attacks are a vastly underestimated class of Denial of Service attacks, affecting
over 10% of Node.js-based web services [36]. Many well-known platforms such
as Stack Overflow [37], Cloudflare [38], and iCloud [39] have reported exponential
matching in their systems.

In Chapter 3, we give an introduction to regular expressions and automata.
Then, Chapter 4 introduces a formal semantics for regular expression matching,
which is then used to put forward a sound analysis for ReDoS vulnerabilities.
If our algorithm classifies a regular expression as safe, then there is a strong
mathematical guarantee about the fact that the exponential behaviour cannot be
triggered. In order to assess the usefulness of our technique, we implemented it in
a tool called RAT [40]. In Chapter 5 we compare our analyzer to seven other ReDoS
detectors on a large dataset of 74,669 regular expressions. In our experiments,
we observed that our implementation is the only ReDoS analyzer that does not
present false negatives. Furthermore, in the great majority of the test cases, RAT is
faster–often by orders of magnitude–than most other tools.

1.3.2. Verification of security properties for programs

In Part III of this thesis, we shift our focus to program analysis. A particularly in-
teresting class of runtime failures is those that can be triggered by an external user.
These errors aremore dangerous than those that cannot, as they could be exploited

8 CHAPTER 1. INTRODUCTION

by an attacker and lead to security breaches such as Denial-of-Service attacks or
remote code execution. There are many well-known exploitable runtime errors
that led to sophisticated exploits. Among them, we find Code Red [41], the Morris
Worm [42], SQL Slammer [43], and Heartbleed [44]. Numerous companies identi-
fied exploitable runtime errors in their systems, including Meta [45], Apple [46],
and Google [47]. Microsoft recently published a report showing that consistently
over 20 years, around 70% of the security breaches that have been reported in
their systems are due to exploitable memory corruption [29]. In our work, we
are interested in proving the nonexploitability of a system, namely verifying the
absence of runtime errors that can be triggered by an attacker.

In Chapter 6 we give a lightweight introduction to program analysis by abstract
interpretation. Then, in Chapter 7 we put forward our framework for the nonex-
ploitability analysis. First,we introduce thenovel property of safety-nonexploitability,
which we show can be characterized in terms of semantically tainted (i.e., user-
controlled) variables. We leverage this characterization to design a sound analysis
by abstract interpretation capable of ruling out the presence of exploitable runtime
error. The analysis combines a semantic taint analysis–namely an analysis that
tracks the set of user-controlled variables–with a traditional value analysis. As a
result, the precision of the taint analysis is enhanced by the program invariants
inferred by the value domain. The analysis has the capability to label each warning
as security-critical or not, prioritizing the alarms by possible impact and there-
fore enhancing the usefulness of the analyzer. To evaluate the effectiveness of
our framework, in Chapter 8 we implement it for a large subset of C by relying on
MOPSA [48], a platform to build static analyses based on abstract interpretation.We
compare the regular analysis and our modified version on 77 real-world programs
taken from the Coreutils package. To them, we add 13,261 test cases from the Juliet
benchmarks [49]. We found that our analysis is able to consistently prove that more
than 70% of the alarms generated by the regular analyzer are not exploitable.

1.3.3. Contributions

In this work, we put forward techniques based on formal reasoning to rule out the
existence of security vulnerabilities in the context of both regular expressions and
program runtime errors. Our analyses can possibly raise false alarms, but once

1.3. CONTRIBUTIONS AND OUTLINE 9

they classify a system as secure, then there is a strong mathematical guarantee
about the fact that there are no security breaches concerning the properties we
consider. We pair our theoretical frameworks with practical implementations,
which we consistently test on real-world examples. In this thesis, we claim the
following contributions:

• In Part II of this manuscript:

– We introduce a novel tree semantics to describe the behaviour of regu-
lar expression matching engines, and we leverage it to formally define
ReDoS vulnerabilities.

– We put forward a sound analysis that extracts an overapproximation of
the language of words that can cause an exponential ReDoS attack for a
regular expression.

– We implement the analysis in a tool called RAT. We also compare the
performance and the precision of RAT to seven other detectors. In our
evaluation, we find that RAT is on average one to two orders ofmagnitude
faster than most other approaches, while being strictly more expressive
than the others. More interestingly, RAT is the only detector that does
not report false negatives.

• In Part III of this manuscript:

– We introduce a novel property, safety-nonexploitability, and we give its
semantic characterization as a hyperproperty [50].

– Weput forward analternative characterizationof safety-nonexploitability
in terms of semantically tainted (i.e., user-controlled) variables.

– We introduce anewpractical,modular analysis by abstract interpretation
that combines a traditional value analysis with a taint analysis to prove
safety-nonexploitabilty.

– We implement our analysis and evaluate it on a large set of real-world C
programs. In our experiments, we found that our framework is able to
consistently prove that more than 70% of the alarms previously raised
by the regular analyzer are not exploitable.

10 CHAPTER 1. INTRODUCTION

The results described in Part II have been published in TASE 2022 [51], and
subsequently extended in Science of Computer Programming (2023) [52]. The
source code of the RAT analyzer is available on Github [40]. Part III of this thesis
is based on a paper that appeared in VMCAI 2024 [53]. An artifact is available on
Zenodo to replicate our experimental results [54]. The source code of the analyzer
is available on Gitlab [55].

Chapter 2

Mathematical Background

In this chapter, we study the mathematical background used in the rest of this
thesis. We start with basic set theory in Section 2.1, and we then proceed to order
theory in Section 2.2. Then, we study the theory of fixpoints in Section 2.3, which
is widely used in static analysis and verification.

2.1. Basics

Sets. Let X, Y and Z be three sets. The Cartesian product of X and Y is the set
X × Y ≜ { (x, y) | x ∈ X ∧ y ∈ Y }. The set X × X is sometimes denoted as X2. The
Cartesian product can be generalized to n-ary tuples, n ∈ N, as (x1, x2, . . . , xn) ∈
X1 × X2 × · · · × Xn, and Xn if X1 = X2 = · · · = Xn. The infinite Cartesian product of a
set X is X×X×· · · ≜ X∞. Sequences of arbitrary, but finite, length are elements in
X∗ ≜

⋃
n≥0 X

n, where X0 ≜ ∅. Finite sequences of length at least one are elements
in X+ ≜

⋃
n≥1 X

n. If x = x1, . . . , xn ∈ X1 × · · · × Xn is a tuple of length n, we define
πi : X1 × · · · × Xn → Xi as πi(x) ≜ xi for 1 ≤ i ≤ n. We denote by |X| the cardinality
(i.e., the number of elements) of X, and by ℘(X) its powerset (i.e., the set of subsets
of X, that is {X′ | X′ ⊆ X }). A partition P of X is a set of non-empty subsets of X,
called blocks, that are pairwise disjoint and the union of which gives X.

Relations. A relation R over two sets X and Y is a subset of X × Y , namely R ∈
℘(X × Y). The composition of two relations R1 ∈ ℘(X × Y), R2 ∈ ℘(Y × Z) is defined
as R1 ◦ R2 ≜ { (x, z) | ∃(x, y) ∈ R1 ∧ ∃(y, z) ∈ R2 }. A relation R ∈ ℘(X × Y) is total if

11

12 CHAPTER 2. MATHEMATICAL BACKGROUND

∀x ∈ X : ∃ y ∈ Y : (x, y) ∈ R. Let R be a relation on X2.

• R is reflexive if ∀x ∈ X : (x, x) ∈ R.

• R is transitive if ∀x1, x2, x3 ∈ X : (x1, x2) ∈ R ∧ (x2, x3) ∈ R =⇒ (x1, x3) ∈ R.

• R is symmetric if ∀x1, x2 ∈ X : (x1, x2) ∈ R ⇐⇒ (x2, x1) ∈ R.

• R is antisymmetric if ∀x1, x2 ∈ X : (x1, x2) ∈ R ∧ (x2, x1) ∈ R =⇒ x1 = x2.

If R is reflexive, transitive, and symmetric we say that R is an equivalence. If R
is reflexive, transitive, and antisymmetric we say that R is a partial order. If R is
reflexive and transitive we say that R is a quasiorder (or preorder).

Functions. A function is a relation R ∈ ℘(X × Y) where any element of X is in
relation with at most one element of Y , that is ∀x ∈ X : ∀ y1, y2 ∈ Y : (x, y1) ∈
R ∧ (x, y2) ∈ R =⇒ y1 = y2. If f ∈ ℘(X × Y) is a function from X to Y we write
f : X → Y . A function f : X → Y is partial if ∃x ∈ X : ∄ y ∈ Y : f (x) = y. A
function f : X → X where the domain and codomain coincide is sometimes called
an operator.

The composition of two functions f : X → Y and g : Y → Z is defined as
(g ◦ f)(x) ≜ g(f (x)). We define id : X → X as the identity function, namely id(x) ≜ x.
Let f : X → X be a function. For all n ∈ N we inductively define:

f n ≜

id if n = 0

f ◦ f n–1 if n > 0

We define the following classes of functions:

O(g) ≜ { f | ∃c1 : ∃n0 : ∀n ≥ n0 : f (n) ≤ c1 · g(n) }

Ω(g) ≜ { f | ∃c1 : ∃n0 : ∀n ≥ n0 : f (n) ≥ c1 · g(n) }

Θ(g) ≜ { f | ∃c1 : ∃c2 : ∃n0 : ∀n ≥ n0 : c1 · g(n) ≤ f (n) ≤ c2 · g(n) }

If f ∈ O(g), we write f = O(g).

2.2. ORDER THEORY 13

x1

x0

x2

A. Poset with three elements

x1

x0 x2

x3

B. Poset with four elements

FIGURE 2.1. Examples of posets

2.2. Order theory

Posets. Posets are defined as sets equipped with a partial order.

Definition 2.1 (Poset)
A partially ordered set (poset) (X,⊑) is a set X equipped with a partial order
relation⊑∈ ℘(X × X).

Example 2.1 (Poset)
Let X be a set. Then, (℘(X),⊆) is a poset ordered by set inclusion. Observe
that there is no need for X to be a poset itself.

Let (X,⊑) be a poset. Two elements x1, x2 ∈ X are comparable if either x1 ⊑ x2
or x2 ⊑ x1 holds, and they are incomparable otherwise. Hasse diagrams are used to
graphically represent posets. In such diagrams, each element of X corresponds to
a vertex in the plane, and draws a segment that goes upward from one vertex x1 to
another vertex x2 whenever x1 ⊑ x2.

Example 2.2 (Hasse diagram)
Figure 2.1A-2.1B represent examples of posets. In particular, Figure 2.1A rep-
resents the poset ({ x0, x1, x2 }, { (x0, x1), (x0, x2) }), and Figure 2.1B represents
the poset ({ x0, x1, x2, x3 }, { (x0, x1), (x2, x3) }).

Lower and upper bounds. Let (X,⊑) be a poset and X′ ⊆ X be a subset of X. The
subset X′ has:

• An upper bound u iff u ∈ X and ∀x ∈ X′ : x ⊑ u

14 CHAPTER 2. MATHEMATICAL BACKGROUND

• A least upper bound (lub) ⊔X′ iff ⊔X′ is an upper bound of X′ smaller than other
upper bounds of X′. We denote ⊔{x1, x2} as x1 ⊔ x2.

• A top element ⊤ iff⊤ = ⊔X ∈ X

• A lower bound l iff l ∈ X and ∀x ∈ X′ : l ⊑ x

• A greatest lower bound (glb) ⊓X′ iff ⊓X′ is a lower bound of X′ greater than other
lower bounds of X′. We denote ⊓{x1, x2} as x1 ⊓ x2.

• A bottom element ⊥ iff⊥ = ⊓X ∈ X

Lattices. Lattices are posets that require every nonempty finite subset to have a
lub and a glb.

Definition 2.2 (Lattice)
A lattice (X,⊑,⊔,⊓) is a poset where ∀x1, x2 ∈ X the lub x1 ⊔ x2 and the glb
x1 ⊓ x2 exist.

Complete lattices are lattices that additionally require every (possibly infinite)
subset to have a lub and a glb.

Definition 2.3 (Complete lattice)
A complete lattice (X,⊑,⊔,⊓,⊥,⊤) is a poset where ∀X′ ⊆ X the lub ⊔X′ and
the glb ⊓X′ exist. Complete lattices have a top element ⊤ ≜ ⊔X and a bottom
element⊥ ≜ ⊓X.

Example 2.3 (Lattices)
The posets in Figure 2.1A and Figure 2.1B are not lattices, as they do not have a
lub for every possible finite subset. Figure 2.2A represents a complete lattice
with a finite number of elements. The set (N,≤) (represented in Figure 2.2B)
is a lattice, but not a complete lattice: while every finite subset has a lub, ⊔N

does not exist. If we add∞ to N, we observe that (N ∪ {∞},≤) (represented
in Figure 2.2C) is indeed a complete lattice.

2.2. ORDER THEORY 15

x2

x0

x1

x3

A. Complete lattice with a finite
number of elements

0

1

2

B. Lattice with an infinite num-
ber of elements

0

1

2

∞

C. Complete lattice with an infi-
nite number of elements

FIGURE 2.2. Examples of lattices

CPOs. A chain C of a poset (X,⊑) is a subset of X such that any two elements are
comparable: C ⊆ X is a chain △⇐⇒ ∀x1, x2 ∈ C : x1 ⊑ x2 ∨ x2 ⊑ x1. An ascending
chain is a sequence x0, x1, . . . such that x0 ⊑ x1 ⊑ · · · ⊑ xn–1 ⊑ xn ⊑ · · · .

Example 2.4 (Infinite ascending chain)
Let fib(n) be the n-th Fibonacci number defined as follows.

fib(n) ≜

n if n = 0 or n = 1

fib(n – 1) + fib(n – 2) otherwise

The sequence (fib(i), i ∈ N) is an infinite ascending chain over (N,≤):

0 ≤ 1 ≤ 1 ≤ 2 ≤ 3 ≤ 5 ≤ 8 ≤ · · ·

Definition 2.4 (CPO)
A complete partial order (CPO) is a poset such that every chain has a lub.

Observe that the empty sequence ∅ is a chain, so that our definition of CPO
requires ⊔∅ to exist. For this reason, we state that ⊔∅ = ⊥. As a result, all our CPOs
have a bottom element⊥.

Monotonicity and continuity. Let f : X1 → X2 be a function between two posets
(X1,⊑1) and (X2,⊑2). We say that f is monotonic iff ∀x1, x2 ∈ X1 : x1 ⊑1 x2 =⇒
f (x1) ⊑2 f (x2). Continuity generalizes monotonicity: a function f : X1 → X2
between two CPOs (X1,⊑1,⊔1,⊥1) and (X2,⊑2,⊔2,⊥2) is continuous iff for every

16 CHAPTER 2. MATHEMATICAL BACKGROUND

chain C ⊆ X1, the set { f (x) | x ∈ C } is a chain and the limits coincide f (⊔1C) =
⊔2{ f (x) | x ∈ C }.

2.3. Fixpoints

Fixpoints (namely elements such that f (x) = x for an operator f : X → X) are
fundamental to formally reason about the behaviour of programming languages.
In fact, the formal semantics (that is, a precise mathematical description of the
behaviour) of programming languages can be expressed as a least fixpoint. In this
section, we study fixpoints, giving sufficient conditions for their existence.

Definition 2.5 (Fixpoints)
Let (X,⊑) be a poset and f : X → X be an operator on X.

• x is a fixpoint of f iff f (x) = x

• x is a prefixpoint of f iff x ⊑ f (x)

• x is a postfixpoint of f iff f (x) ⊑ x

• fps(f) ≜ { x | f (x) = x } is the set of fixpoints of f

• lfpx0 f ≜ min{ x ∈ fps(f) | x0 ⊑ x }, if it exists, is the least fixpoint of f
greater than x0

• lfp f ≜ lfp⊥ f , if it exists, is the least fixpoint of f

• gfpx0 f ≜ max{ x ∈ fps(f) | x ⊑ x0 }, if it exists, is the greatest fixpoint of f
smaller than x0

• gfp f ≜ gfp⊤ f , if it exists, is the greatest fixpoint of f

Observe that, in the general case, there is no guarantee that an operator f has
any fixpoint at all.

Example 2.5 (Fixpoints in Fibonacci’s sequence)
Figure 2.3A represents the first 6 elements of the Fibonacci sequence as

2.3. FIXPOINTS 17

0 1 2 3 4 5 6 7 8
0

11

2

3

5

8
f (x) = x
fib(x)

A. Plot representing the first 6 elements of the
Fibonacci sequence

x2

x0

x1

x3

g g

gg

B. Operator with no fixpoints

FIGURE 2.3. Examples of operators

defined in Example 2.4. The set of fixpoints for fib is fps(fib) = { 0, 1, 5 }.

Example 2.6 (Operator with no fixpoints)
Figure 2.3B represents an operator g over the poset represented in Figure 2.2A,
where g ≜ { (x0, x1), (x1, x3), (x3, x2), (x2, x0) }. The operator g does not have
any fixpoint.

We now present two theorems that guarantee, under some assumptions, that
fixpoints do exist. The first, Tarski’s fixpoint theorem [56], relates the monotonicity
of an operator in a complete lattice with the existence of a least fixpoint.

Theorem 2.1 (Tarski’s fixpoint theorem [56])
Let f : X → X be a monotonic operator over a complete lattice
(X,⊑,⊔,⊓,⊥,⊤). Then, the set of fixpoints fps(f) is a non-empty lattice. In
particular, lfp f exists, and it corresponds to the glb of the postfixpoints of f .

lfp f = ⊓{ x ∈ X | f (x) ⊑ x }

Thm. 2.1 is significant because it gives a precise characterization of the least

18 CHAPTER 2. MATHEMATICAL BACKGROUND

fixpoint of a monotonic operator as the glb of its postfixpoints.

Example 2.7 (Tarski’s least fixpoint)
Consider fib : N ∪ {∞}→ N ∪ {∞} defined as follows:

fib(n) ≜


n if n = 0 or n = 1

fib(n – 1) + fib(n – 2) if n ∈ N \ {0, 1}

∞ if n =∞

Observe that (N ∪ {∞},≤,max,min, 0,∞) is a complete lattice, and fib is a
monotonic operator over it. Then, we can apply Tarski’s fixpoint theorem
and, by observing that the set of postfixpoints for fib is { 0, 1, 2, 3, 4, 5 }, obtain
the following:

lfp fib = min{ 0, 1, 2, 3, 4, 5 } = 0

Another theorem that not only guarantees the existence of the least fixpoint
of a function, but also expresses it as the limit of an iteration, is Kleene’s fixpoint
theorem [57].

Theorem 2.2 (Kleene’s Fixpoint Theorem [57])
Let f : X → X be a continuous operator over a CPO (X,⊑,⊔,⊥). Then, lfp f
exists, and the following holds.

lfp f = ⊔ { f i(⊥) | i ∈ N }

While Tarski’s theorem requires the operator to bemonotonic, Kleene’s fixpoint
theorem requires the operator to be continuous, which is a strictly stronger hy-
pothesis. On the other hand, Kleene’s theorem only requires a CPO, while Tarski’s
theorem requires a complete lattice. Furthermore, Kleene’s theorem gives a con-
structive definition for the least fixpoint of a continuous operator f as the limit of
an iteration. While the characterization is constructive, this does not directly lead
to an algorithm to compute the least fixpoint of f , as lfp f could be obtained after
an infinite number of iterations.

2.3. FIXPOINTS 19

x0

x1

x2x3

x4

g0(x0) x0

x1

x2x3

x4

g1(x0)
x0

x1

x2x3

x4

g2(x0)

x0

x1

x2x3

x4

g3(x0)

FIGURE 2.4. Kleene’s fixpoint iterates

Example 2.8 (Kleene’s least fixpoint computation)
Consider the CPO represented in Figure 2.4. We define the operator g as
follows: { (x0, x1), (x1, x2), (x2, x2), (x3, x4), (x4, x4) }, and we observe that g is a
continuous function. Figure 2.4 represents the first three Kleene’s iterates for
the function g. We observe that for all i ≥ 3, gi(x0) = x2. By applying Kleene’s
theorem, the following holds:

lfp g = ⊔ { gi(x0) | i ∈ N } = x2

The theory of fixpoints that we presented in this section is widely used in
various areas of computer science. For instance, StephenKleene introduced the star
operator of regular expressions (studied in Chapter 3), which can be expressed as an
infinite union of languages, or equivalently as the fixpoint of a continuous operator
over languages. Its existence is guaranteed byKleene’s theorem. Furthermore, both
Kleene’s and Tarski’s fixpoint theorems are fundamental to define the semantics
of programming languages. In fact, the behaviour of programming languages is
formally defined as the fixpoint of a transition function over sets of program states.
In Chapter 6 we formalize the behaviour of a simple programming language called
WHILE as the least fixpoint of the transfer function, and the existence of such a
fixpoint is guaranteed by the theorems presented in this section.

20 CHAPTER 2. MATHEMATICAL BACKGROUND

Part II

Verification of Security
Properties for Regular

Expressions

21

Chapter 3

Regular Expressions and
Automata

In this chapter, we study a class of formal languages known as regular languages.
We start by giving a lightweight introduction to formal languages in Section 3.1,
and then we introduce regular expressions (Section 3.2) and finite automata (Sec-
tion 3.3).

3.1. Formal languages

In mathematics, computer science, and linguistics, a formal language consists of
words whose letters are taken from an alphabetΣ and are well-formed according to
a specific set of rules. The alphabet Σ of a formal language consists of symbols that
concatenate into strings of the language. Each string concatenated from symbols
of this alphabet is called a word, and the words that belong to a particular formal
language are sometimes called well-formed words or well-formed formulas. A
formal language is often defined by means of a formal grammar, such as a regular
grammar or context-free grammar, which consists of its formation rules. We now
describe these concepts more formally.

Let Σ be a finite set of symbols. A finite sequence of elements of Σ is called a
finite word. We denote the sequence (a1, a2, . . . , an) by mere juxtaposition:

a1a2 . . . an

23

24 CHAPTER 3. REGULAR EXPRESSIONS AND AUTOMATA

The set of words is endowed with the operation of concatenation product, which
associates to twowords u = a1 . . . an and v = b1 . . . bm theword uv = a1 . . . anb1 . . . bm.
We denote with ϵ the empty word. We denote by Σ∗ the set of words on Σ and
by Σ+ the set of nonempty words, that is Σ+ ≜ Σ∗ \ {ϵ}. A formal language, or
simply a language, is a subset of Σ∗. In what follows, we describe in detail the class
of languages known as regular. There are many classes of languages other than
the regular ones, such as context-free languages, context-sensitive languages, and
recursively enumerable languages [58, 59, 60]. In this work, we focus primarily on
regular languages and do not extensively discuss the others.

There are different equivalent ways to define regular languages. For instance,
they can be defined as the set of languages recognized by regular expressions [58].
An alternative (but, as we will show, equivalent) definition is that regular languages
are the class of languages recognized by finite automata (FAs). In the following
sections, we formally introduce these concepts.

3.2. Regular expressions

Regular expressions (sometimes referred as regexes) are defined as follows.

R ∈ R (Regular expressions)

R := ϵ | a ∈ Σ | (R1 | R2) | R1 · R2 (or R1R2) | R∗1

We extend regular expressions with the possibility to recognize the empty lan-
guage, namely the empty set of words, as follows.

R ∈ R⊥ (Empty regular expressions)

R := ϵ | a ∈ Σ | (R1 | R2) | R1 · R2 (or R1R2) | R∗1 | ⊥r

Observe that R ⊂ R⊥. Separating R from R⊥ is useful as empty regular expressions
are not usually implemented in real-world programming languages. Nevertheless,
R⊥ is important from a mathematical point of view, e.g., to make regular expres-
sions closed under intersection. Let a ∈ Σ. We define the language recognized (or

3.2. REGULAR EXPRESSIONS 25

accepted) by a regular expression R ∈ R⊥ as follows.

L(⊥r) ≜ ∅ (3.1)

L(ϵ) ≜ {ϵ} (3.2)

L(a) ≜ {a} (3.3)

L(R1 | R2) ≜ L(R1) ∪ L(R2) (3.4)

L(R1 · R2) ≜ L(R1) · L(R2) (3.5)

L(R∗1) ≜
⋃
i≥0

L(R1)i (3.6)

Example 3.1 (Regular expression)
The regular expression aba∗ recognizes the language { aban | n ≥ 0 }.

When two regular expressions R1 and R2 recognize the same language, we
write R1 =L R2. We can finally give the formal definition of regular languages, that
is the class of languages recognized by regular expressions.

Definition 3.1 (Regular language)
Let L ∈ ℘(Σ∗).

L is regular △⇐⇒ ∃R ∈ R⊥ : L(R) = L

It is sometimes useful to extend regular expressions with complement and
intersection constructors as follows.

R ∈ R+ (Extended regular expressions)

R := ϵ | a ∈ Σ | (R1 | R2) | R1 · R2 (or R1R2) | R∗1 | ⊥r | R1 ∩ R2 | R1

The last two constructors respectively correspond to the intersection and the
complement. They recognize the following language:

L(R1 ∩ R2) ≜ L(R1) ∩ L(R2) (3.7)

L(R1) ≜ Σ∗ \ L(R1) (3.8)

The new constructors do not increase the expressiveness of regular expressions,

26 CHAPTER 3. REGULAR EXPRESSIONS AND AUTOMATA

as regular languages are closed under complement and intersection [58]. This implies
that by intersecting two regular languages or complementing a regular language,
we still obtain a regular language. While extended regular expressions are exactly
as powerful as traditional regular expressions, they have been used in the literature
to put forward efficient algorithms to solve the language inclusion problem [61, 62]
(i.e., deciding whether L(R1) ⊆ L(R2) holds). In Chapter 5, we describe how we
take advantage of extended regular expressions to implement an efficient static
analyzer for Regular Expression Denial of Service (ReDoS) vulnerabilities [36].

Smart constructors [61, 62] can be used to reduce the size of regular expressions.
They are constructors that simplify the resulting regular expression when possible.
For instance, consider the alternative definition of the concatenation of two regular
expressions that ignores ϵ.

concat(R1,R2) ≜


R1 if R2 = ϵ

R2 if R1 = ϵ

R1 · R2 otherwise

(3.9)

The fundamental property that smart constructors must respect is the language
preservation, meaning that regular expressions built with smart and regular con-
structors must accept exactly the same language.

Some constructors that are commonly used for regular expressions in program-
ming languages are simply syntactic sugar for other basic constructors. Here we
present some widely-used ones.

R? ≜ R | ϵ (3.10)

R+ ≜ RR∗ (3.11)

[a – z] ≜ a | b | · · · | z (3.12)

[A – Z] ≜ A | B | · · · | Z (3.13)

[a – zA – Z] ≜ [a – z] | [A – Z] (3.14)

\d ≜ 0 | 1 | · · · | 9 (3.15)

\w ≜ \d | [a – zA – Z] | _ (3.16)

These constructors do not increase the expressiveness of regular expressions, but

3.2. REGULAR EXPRESSIONS 27

they are commonly used in real-world programs as they improve the readability of
the patterns.

The language membership problem consists in deciding whether a word belongs
to a language, namely decidingwhetherw ∈ L(R) holds forw ∈ Σ∗ andR ∈ R+. The
problem can be solved in linear time with respect to the length of the word [58],
and we further discuss the time complexity in Section 3.3. Regular expression
derivatives can be used to solve the language membership problem. In general,
given a symbol a, the derivative of a regular expression R with respect to a is a
regular expression that recognizes only those suffixes of strings with a leading a
accepted by R. Before formally defining derivatives, we define a helper function
ν : R+ → R+ that has the following property:

ν(R) =

ϵ if ϵ ∈ L(R)

⊥r otherwise
(3.17)

The function is defined as follows.

ν(ϵ) ≜ ϵ (3.18)

ν(a) ≜ ⊥r (3.19)

ν(⊥r) ≜ ⊥r (3.20)

ν(R1 | R2) ≜ ν(R1) | ν(R2) (3.21)

ν(R1 · R2) ≜ ν(R1) ∩ ν(R2) (3.22)

ν(R∗1) ≜ ϵ (3.23)

ν(R1 ∩ R2) ≜ ν(R1) ∩ ν(R2) (3.24)

ν(R1) ≜

ϵ if ν(R1) = ⊥r
⊥r if ν(R1) = ϵ

(3.25)

Let a, b ∈ Σ such that a ̸= b. We define the Brzozowski’s derivative [63] ∂a : R+ →
R+ with respect to the symbol a as follows.

∂a(ϵ) ≜ ⊥r (3.26)

∂a(a) ≜ ϵ (3.27)

28 CHAPTER 3. REGULAR EXPRESSIONS AND AUTOMATA

∂a(b) ≜ ⊥r (3.28)

∂a(⊥r) ≜ ⊥r (3.29)

∂a(R1 · R2) ≜ ∂a(R1) · R2 | ν(R1) · ∂a(R2) (3.30)

∂a(R1 | R2) ≜ ∂a(R1) | ∂a(R2) (3.31)

∂a(R∗1) ≜ ∂a(R1) · R∗1 (3.32)

∂a(R1 ∩ R2) ≜ ∂a(R1) ∩ ∂a(R2) (3.33)

∂a(R1) ≜ ∂a(R1) (3.34)

Example 3.2 (Brzozowski’s derivative)

∂a((a | a)∗) = ∂a((a | a)) · (a | a)∗

= (∂a(a) | ∂a(a)) · (a | a)∗

= (ϵ | ϵ) · (a | a)∗

=L (a | a)∗

The derivatives can be extended to words as follows. Let w ∈ Σ∗ and a ∈ Σ.

∂ϵ(R) ≜ R (3.35)

∂wa(R) ≜ ∂w(∂a(R)) (3.36)

Theorem 3.1 (Brzozowski’s theorem [63])
Let w ∈ Σ∗, R ∈ R+.

w ∈ L(R) ⇐⇒ ϵ ∈ L(∂w(R)) ⇐⇒ ϵ = ν(∂w(R))

Thm. 3.1 trivially leads to an algorithm to solve the language membership
problem for regular languages: first, compute the derivative of a regular expression
with respect to a word w, and then check if ν applied to the result is exactly ϵ.

3.3. Finite automata

We now introduce finite automata (FAs), which we will show recognize exactly
the same class of languages accepted by regular expressions. Automata can be

3.3. FINITE AUTOMATA 29

q0 q1 q2
a b

a

A. Example of a DFA

q0 q1

q2

q3

a

b

b

a

a

a
B. Example of a NFA

FIGURE 3.1. Examples of FAs

deterministic or nondeterministic. A deterministic finite automaton (DFA) is a tuple
(Q, δ, i,F) where Q is a finite set of states, δ : Q × Σ → Q is the transition function,
i ∈ Q is the initial state, and F ⊆ Q is the set of final states. A nondeterministic finite
automaton (NFA) is a tuple (Q, δ, i, F) where Q is a finite set of states, δ ⊆ Q× Σ× Q
is the transition relation, i ∈ Q is the initial state, and F ⊆ Q is the set of final states.
Observe that the difference between a DFA and a NFA is that in the former δ is a
function, while in the latter δ is a relation. We represent automata as graphs where
the nodes correspond to the states, and the arcs between them are the transitions.
The node with an incoming arc that does not originate from any other node is the
initial state, while nodes with a double circle are the final states. Figures 3.1A-3.1B
represent examples of FAs.

Let q0, q1 ∈ Q, a ∈ Σ. If q1 ∈ δ(q0, a), then we write q0
a→ q1. Conversely, if

∄q2 ∈ δ(q0, a), then we write q0
a↛. If w ∈ Σ∗, then q0

w
⇝ q1 means that the state

q1 is reachable from q0 by following the word w. More formally, by induction on
the length of w: (i) if w = ϵ then q0

ϵ
⇝ q1

△⇐⇒ q0 = q1; (ii) if w = av with a ∈ Σ,
v ∈ Σ∗ then q0

av
⇝ q1

△⇐⇒ ∃q2 ∈ δ(q0, a) : q2
v
⇝ q1. The language accepted by the FA

A = (Q, δ, i, F) is defined as follows.

L(A) ≜ {w ∈ Σ∗ | ∃q f ∈ F : i
w
⇝ q f } (3.37)

30 CHAPTER 3. REGULAR EXPRESSIONS AND AUTOMATA

{q0} {q1} {q2, q3}

∅

a

b

b

a ab

a, b

FIGURE 3.2. DFA obtained with the subset construction from the NFA in Figure 3.1B

Example 3.3 (Finite automata)
Figure 3.1A represents a DFA, while Figure 3.1B represents a NFA. The two
automata recognize the same language, that is { aban | n ≥ 0 }.

When two automataA1 andA2 recognize the same language wewriteA1 =L A2.
As it turns out, it is possible to convert a NFA into a DFA using a well-known
technique called subset construction [58]. Let N = (QN, δN, iN,FN) be a NFA. We
denote as sub(N) ≜ (QD, δD, iD, FD) the DFA obtainedwith the subset construction,
where:

• QD is the powerset of QN, namely QD ≜ ℘(QN). Observe that if QN has n states,
QD will have 2n states. Often, many of these states are not reachable from the
initial state, so that they can be omitted.

• iD ≜ { iN }

• FD ≜ { S ∈ QD | S ∩ FN ̸= ∅ }

• For each set S ⊆ QN and for each symbol a ∈ Σ:

δD(S, a) ≜
⋃
q∈S

δN(q, a)

3.3. FINITE AUTOMATA 31

Example 3.4 (Subset construction)
The automaton in Figure 3.2 is the DFA obtained by applying the subset
construction to the NFA in Figure 3.1B. The unreachable states have been
omitted.

The subset construction preserves the language recognized by the automaton,
so that NFAs and DFAs recognize the same class of languages.

Theorem 3.2 (Correctness of sub [58])
Let N be a NFA.

L(N) = L(sub(N))

NFAs that accept ϵ as a valid symbol for the transition relation are known
as ϵ-NFAs. As it turns out, it is possible to convert an ϵ-NFA into a DFA using
a construction similar to the subset construction. We first define the ϵ-closure
eclose of a state q0 in an ϵ-NFA E = (Q, δ, i, F) recursively as follows:

• Base: q0 is in eclose(q0).

• Induction: If a state q1 is in eclose(q0), and q2 ∈ δ(q1, ϵ), then q2 ∈ eclose(q0).

Let E = (QE, δE, iE, FE) be an ϵ-NFA. We denote as epsremove(E) ≜ (QD, δD, iD, FD)
the DFA where:

• All reachable states QD are ϵ-closed subsets of QE, namely QD is the set of
subsets S ⊆ QE such that S = eclose(S).

• iD ≜ eclose(iE)

• FD ≜ { S ∈ QD | S ∩ FE ̸= ∅ }

• δD(S, a) is computed, for all a ∈ Σ and S ∈ QD, as follows:

– Let S = { q1, . . . , qn }

– Let { q′1, . . . , q
′
m } =

⋃n
i=1 δN(qi, a)

– Then, δD(S, a) ≜
⋃m
j=1 eclose(q

′
j)

The construction preserves the language of the ϵ-NFA, which implies that
ϵ-NFAs and DFAs recognize the same class of languages.

32 CHAPTER 3. REGULAR EXPRESSIONS AND AUTOMATA

Theorem 3.3 (Correctness of epsremove [58])
Let E be an ϵ-NFA.

L(E) = L(epsremove(E))

NFAs with ϵ-transitions are commonly used when converting regular expres-
sions into automata. The well-known Thompson’s construction converts regular
expressions into ϵ-NFAs [58]. This method is not only useful from a theoretical
point of view, but it is used in real-world matching engines (such as RE2 [64]) to
convert regular expressions into automata, which are then used to perform the
matching [65]. The construction consists of a recursive procedure that builds an
ϵ-NFA with exactly one final state. In Figure 3.3 we present the construction. The
base cases in Figures 3.3A-3.3C are trivial, and the resulting automata have exactly
two states. The inductive cases in Figures 3.3D-3.3F rely on the inductive construc-
tion for subexpressions. The left state in the boxes represents the initial state in the
automaton built for a subexpression, while the right state is the final one. Figure 3.4
represents thompson(aba∗). The Thompson construction preserves the language
of the regular expressions.

Theorem 3.4 (Correctness of thompson [58])
Let R ∈ R⊥.

L(R) = L(thompson(R))

We showed that regular expressions can be converted into automata, so that
to prove that the two recognize exactly the same class of languages it is sufficient
to show that it is possible to convert automata into regular expressions while
preserving the accepted language. In order to do this, we describe a method called
state elimination [58]. The underlying idea is to interpret the transition labels in
a DFA as regular expressions, and keep eliminating states until we have only the
initial and final states. In this scenario, the language of the automaton is the union
over all paths from the initial state to any final state of the language formed by
concatenating the languages of the regular expressions along the path. Let q be the
state that we want to remove, let q1, . . . , qn be its predecessors, and let q′1, . . . , q

′
m be

its successors. We assume that q is not among its predecessors or successors. The
transition from the predecessor qi (for i ∈ { 1, . . . , n }) to q is denoted asRi ∈ R⊥, the

3.3. FINITE AUTOMATA 33

q0 q1
ϵ

A. thompson(ϵ)

q0 q1

B. thompson(⊥r)

q0 q1
a

C. thompson(a)

q0

q1 thompson(R1) q2

q3 thompson(R2) q4

q f

ϵ ϵ

ϵ ϵ

D. thompson(R1 | R2)

q0 q1 thompson(R1) q2 q3 thompson(R2) q4 q fϵ ϵ ϵ

E. thompson(R1R2)

q0 q1 thompson(R1) q2 q fϵ ϵ

ϵ

ϵ

F. thompson(R∗)

FIGURE 3.3. Thompson construction

34 CHAPTER 3. REGULAR EXPRESSIONS AND AUTOMATA

q0 q1 q2 q3 q4 q5 q6 q7 q8 q9
ϵ a ϵ b ϵ ϵ a

ϵ

ϵ

ϵ

ϵ

FIGURE 3.4. Thompson’s automaton for aba∗

R1
R2

R3

R4

A. Generic two-states automaton

R1

B. Generic single-state automaton

FIGURE 3.5. Generic shapes of automata with one or two states

transition from q to its successor q′j (for j ∈ { 1, . . . ,m }) is denoted as R′j ∈ R⊥, and
the self loop from q to itself is denoted as S ∈ R⊥. If q has no self-loop, S is simply
⊥r. We can remove q from the set of states by introducing, for each predecessor
qi and each successor q′j a regular expression that represents all the paths that
start from qi, go through q, and reach q′j. This regular expression is RiS

∗R′j, which
is added, with the | operator, to the transition from qi to q′j. We can apply this
elimination strategy to a DFAD = (Q, δ, i, F) as follows:

• For each q f ∈ F, eliminate all the states but q f and i.

• If q f ̸= i, we obtain an automaton with only two states similar to the one in
Figure 3.5A. The language accepted by the automaton is (R1 | R2R∗4R3)

∗R2R∗4.

• If the start state is also accepting, we must perform a state elimination that gets
rid of every state but i. In this case, we obtain a single-state automaton similar
to the one in Figure 3.5B. The automaton accepts the language R∗1 .

• The resulting regular expression is the union (using the | operator) of all the
expressions derived with the described method.

3.3. FINITE AUTOMATA 35

Example 3.5 (State elimination construction)
aba∗ is the regular expression resulting from applying the state elimination
method to the automaton in Figure 3.1A.

We denote as stateelim(D) the regular expression obtained by applying the
state elimination procedure to a DFAD. As it turns out, stateelim preserves the
language recognized by the automaton.

Theorem 3.5 (Correctness of stateelim [58])
LetD be a DFA.

L(D) = L(stateelim(D))

We now present the last conversion method from regular expressions into
automata that preserves the accepted language. Glushkov’s construction [66] is a
less-known algorithm to convert regular expressions into NFAs. Let R ∈ R⊥ be a
regular expression. We denote as glushkov(R) the NFA built with the following
steps:

1. Each symbol in the regular expression is renamed so that each letter occurs at
most once. This step is known as linearization, andwe denote asΣ1 the resulting
alphabet and as R1 the linearized regular expression.

2. Compute the following sets by induction on the structure of the regular expres-
sion:

• P(R1) ≜ { a ∈ Σ1 | aΣ∗1 ∩ L(R1) ̸= ∅ }

• D(R1) ≜ { a ∈ Σ1 | Σ∗1a ∩ L(R1) ̸= ∅ }

• F(R1) ≜ { ab ∈ Σ1 × Σ1 | Σ∗1abΣ
∗
1 ∩ L(R1) ̸= ∅ }

• N(R1) ≜ { ϵ } ∩ L(R1)

3. Construct a DFAD = (Q, δ, i, F) as follows:

• i is an artificial initial state.

• Create a state for each symbol in the new alphabet, and to them add i:
Q ≜ Σ1 ∪ { i }.

• For each a ∈ P(R1), add a transition i
a→ a.

36 CHAPTER 3. REGULAR EXPRESSIONS AND AUTOMATA

i a1 b2 a3
a1 b2 a3

a3

A. Glushkov’s DFA for aba∗

i a1 b2 a3
a b a

a

B. Glushkov’s NFA for aba∗

FIGURE 3.6. Example of Glushkov’s automaton for aba∗

• For each ab ∈ F(R1), add a transition a
b→ b.

• The set of final states is D(R1). If N(R1) = { ϵ }, then also i is final.

4. Build a NFA N by removing the linearization, replacing each symbol in Σ1 with
the original symbol in Σ.

Example 3.6 (Glushkov’s contruction)
Consider the regular expression aba∗. The linearized regular expression
is a1b2a∗3, and the linearized alphabet is { a1, b2, a3 }. P(a1b2a∗3) = { a1 },
D(a1b2a∗3) = { b2, a3 }, F(a1b2a∗3) = { a1b2, b2a3, a3a3 }, and N(a1b2ba∗3) = ∅.
Figure 3.6A represents the DFA obtained with the procedure described at
the third step of the construction, while Figure 3.6B represents the resulting
NFA for the Glushkov construction. Observe that in general automata built
using the Glushkov construction present nondeterministic transitions, even
though this is not the case in our example.

The Glushkov construction preserves the language of regular expressions.

Theorem 3.6 (Correctness of glushkov [66])
Let R ∈ R⊥.

L(R) = L(glushkov(R))

Using the results presented in this section, we can finally prove that finite

3.3. FINITE AUTOMATA 37

Regular expressions

DFAsNFAs ϵ-NFAs

thompson

epsremove

DFAs are ϵ-NFAs
stateelim

sub

DFAs are NFAs

glushkov

FIGURE 3.7. Language-preserving conversion methods between regular expres-
sions and finite automata

automata and regular expressions recognize the same class of languages. Fig-
ure 3.7 summarizes the language-preserving conversion methods between regular
expressions and finite automata.

Theorem 3.7 (Equivalance of automata and regular expressions)
Regular expressions, DFAs, NFAs, and ϵ-NFAs recognize the same class of
languages.

We now describe a procedure to decide the language membership for DFAs,
and we argue that it can be decided in linear time with respect to the length of
the input word. LetD = (Q, δ, i, F) be a DFA. The procedure member : Σ∗ → Q→ B

returns tt iff there is a path from the input state to a final state by matching the
input word inD. A word w ∈ Σ∗ is in L(D) iff member(w, i) = tt.

member(w, q) ≜



tt if w = ϵ and q ∈ F

ff if w = ϵ and q /∈ F

member(v, q′) if w = av and q a→ q′

ff if w = av and q a↛

(3.38)

The procedure considers the symbols in the input word: if there is a transition
from the current state to another by matching the first symbol, then we perform
a recursive call to member. If the input word is empty and q is a final state, then

38 CHAPTER 3. REGULAR EXPRESSIONS AND AUTOMATA

the word is accepted by the automaton. Since the procedure performs at most |w|
recursive calls, it runs inO(|w|) time, so that deciding whetherw is inL(D) is linear
in the length of w. This shows that the language membership problem for regular
languages can be decided in linear time with respect to the length of the word.

3.4. Conclusion

In this chapter, we formally defined regular languages as the class of languages
recognized by regular expressions. After introducing DFAs, NFAs, and ϵ-NFAs,
we argued that they all recognize the same class of languages, i.e., the regular
languages. Lastly, we showed that the language membership problem for this class
of languages can be decided in linear time in the length of the input word.

Chapter 4

Regular Expression Denial of
Service Vulnerabilities Analysis

Modern programming languages often provide functions to manipulate regular ex-
pressions in standard libraries. If they offer support for backreferences, thematching
algorithm has an exponential worst-case time complexity: for some so-called vul-
nerable regular expressions, an attacker can craft ad hoc strings to force the matcher
to exhibit an exponential behaviour and perform a Regular Expression Denial of
Service (ReDoS) attack. Interestingly, the vulnerable expressions do not even need
to include backreferences in order to present exponential matching. In this chap-
ter, we introduce a framework to prove the absence of this type of vulnerabilities
in regular expressions. Our approach is semantic, meaning that it is rooted in a
precise mathematical definition of the semantics of regular expression matching.
The framework we propose is sound: once a regular expression is determined to be
safe, then there is a strong mathematical guarantee about the absence of ReDoS
vulnerabilities.

In Section 4.1, we introduce ReDoS attacks, and argue that they are a highly
underestimated kind of Denial of Service attacks. Subsequently, in Section 4.2, we
describe in detail why regular expression matching in real-world programming
languages can generate such vulnerabilities despite the theoretical results from the
last chapter showing that regular expressionmatching is linear time. In Section 4.3
and Section 4.4 we introduce a framework based on a tree semantics to statically

39

40 CHAPTER 4. REDOS VULNERABILITIES ANALYSIS

identify ReDoS vulnerabilities. In particular, we put forward an algorithm to extract
an overapproximation of the set of words that are dangerous for a regular expres-
sion, effectively catching all possible attacks. In Section 4.5 we discuss possible
extensions of this work, while in Section 4.6 we finally conclude by comparing
our framework to other existing approaches to ReDoS detection. The proofs of
the theoretical results are reported in Appendix A. This and the following chapter
are based on a work published at TASE 2022 [51], and subsequently extended in
Science of Computer Programming [52].

4.1. Motivation

Regular expressions are often used to verify that strings in programsmatch a given
pattern. Modern programming languages offer support for regular expressions in
standard libraries, and this encourages programmers to take advantage of them.
However, matching engines in languages such as Python, JavaScript, and Java
employ algorithms with exponential worst-case time complexity in the length
of the string. This is because backreferences extend the expressiveness of regular
expressions, and this comes at the cost of exponential matching in the worst case,
even for regular expressions that do not exploit such features. An attacker can
craft a string to force the matcher to exhibit the exponential behaviour to perform
a ReDoS attack, a particular type of algorithmic complexity attack [35]. In Section 4.2
we describewhy the cost of thematching can be exponential, andwe give examples
of some ReDoS vulnerabilities.

ReDoS attacks are vastly underestimated Denial of Service (DoS) attacks. In a
recent study of regular expressions usage, innearly 4,000Pythonprojects onGithub,
the authors find that over 42% of them contain regular expressions [67], while
in [36] the authors find that 10% of the Node.js-based web services they examined
are vulnerable to ReDoS. In this already harsh scenario, in [68] the authors find
that only 38% of the developers that they surveyed knew about the existence of
ReDoS attacks. Many well-known platforms observed such vulnerabilities in their
systems: among them, we find Stack Overflow [37], Cloudflare [38], and iCloud [39].
Since it is difficult to detect ReDoS vulnerabilities with manual inspection, it is
necessary to automate this process. However, for now, there is no practical and

4.1. MOTIVATION 41

widely adopted solution to detect ReDoS vulnerabilities.

There are many different approaches to static semantics-based ReDoS detec-
tion [69, 70, 71, 72], and they are all based on automata frameworks. Due to the
difficulty in precisely modeling matching engines with automata, static analyzers
often report both false positives and false negatives. In contrast, dynamic ap-
proaches to ReDoS detection [73] can hardly be used in practice, since performing
dynamic testing on exponential algorithms can be excessively costly. Heuristics-
based syntactical analyzer [74, 75, 76, 77] try to detect vulnerabilities by matching
regular expressions against potentially dangerous patterns. However, these tools
do not offer guarantees about the quality of the results, often reporting both false
positives and false negatives.

In this chapter, we put forward a novel approach to statically detect ReDoS
vulnerabilities. We get rid of the complexities to represent the behaviour of match-
ing engines with automata by defining a tree semantics of the matching process.
Next, we leverage it to introduce an analysis that determines whether a regular
expression may be vulnerable or not. In particular, the analysis returns an overap-
proximation of the language of words that can cause exponential matching, being
effectively sound but not complete. Nevertheless, our experiments (see Chapter 5)
show that our approach reports a low number of false positives.

We focus on the most dangerous type of ReDoS vulnerability, namely when the
matching is exponential. To successfully perform an attack that exploits superlin-
ear but non-exponential matching, a malicious user must be allowed to insert very
large strings. Such attacks are considerably less dangerous than the case that we
consider.

Our technique not only eliminates the complexities related to using automata,
but also allows extracting the language of possibly dangerous words, being strictly
more expressive than most existing approaches. This expressiveness can be useful
in different scenarios: for example, existing matching engines can use our algo-
rithm to filter-out dangerous input strings. It is also possible to use the language of
dangerous words by combining our framework with a string analysis in order to
prove the absence of ReDoS vulnerabilities in real-world applications.

42 CHAPTER 4. REDOS VULNERABILITIES ANALYSIS

4.2. Background

4.2.1. Regular expressionmatching in programming languages

The majority of modern programming languages offer support for regular expres-
sionmatching in their standard library.While languagemembership iswell-known
to be computable in linear time in the length of input strings for regular lan-
guages [58, 78] (see Section 3.2), matching engines designers often decide to in-
crease the expressivity of regular expressions by introducing backreferences [79, 80],
making the matching less efficient. Backreferences are constructs that match
the same text as previously matched in a pattern. For instance, consider the
Python regular expression (a*)b\1. The parentheses define a capturing group,
namely a pattern that, once matched, will be available to be referenced again
during the matching. The \1 is a backreference that matches exactly the same
sequence of characters matched in the first capturing group. As a result, the reg-
ular expression accepts the language { anban | n ≥ 0 }, which is a non-regular
context-free language [58]. Backreferences are radically different from other exten-
sions of classic regular expressions that do not change the expressive power (see
Section 3.2), as they cannot be converted into regular constructs. Matching engines
that support backreferences use backtracking algorithms, which have exponential
worst-time complexity. In fact, matching regular expressions with backreferences
is known to be an NP-hard problem [81].

Lookaround assertions are features that enable users to specify assertions on
the characters that will be matched (or have been matched) by a pattern. In case
the assertion is not respected by the input string, the match fails. As it turns out, it
is possible to express lookaround assertions by using only regular constructs, even
though this can be very costly. In fact, the size of a deterministic finite automaton
obtained from a regular expression with lookarounds can be, in the worst case,
doubly exponential in the size of the regular expression [82, 83, 84]. For this reason,
matching engines in mainstream languages support lookaround assertions with
simple backtracking algorithms without resorting to automata, and this comes at
the cost of exponential matching. Only recent advances showed that it is possible
to implement an efficient matching engine that supports lookaround assertions by
relying on oracle regular expressions [84]. However, these advancements have yet

4.2. BACKGROUND 43

TABLE 4.1. Matching algorithms comparison

Algorithm Complexity Used in
Finite automata [58, 78] Linear Rust [85, 86], RE2 Engine [64]
Backtracking [79, 80] Exponential Javascript (V8 runtime) [87, 88],

Java [89, 90], PHP [91, 92],
Perl [93, 94] Python [95, 96],
Ruby [97, 98]

to be implemented in widely used matching engines. Consequently, mainstream
programming languages still rely on inefficient backtracking-based techniques to
support lookarounds.

Since in this work we target backtracking-based matching engines, in Sec-
tion 4.2.4 we introduce the pseudocode for the backtracking matching procedure.
As backreferences and lookarounds are, for the moment, not in the scope of our
analysis, we present a simple version of the matching procedure that does not con-
sider them. Observe that in Section 4.5 we outline some ideas for adding support
for those advanced features.

While the great majority of programming languages allow backreferences and
lookarounds, there exist some exceptions. For instance, Rust uses the techniques
based on finite automata [58, 78] described in Section 3.3 to guarantee superior
performance. This comes at the cost of forbidding backreferences and lookaround
assertions. The official Rust documentation reports “Backreferences and arbitrary
lookahead/lookbehind assertions are not provided. In return, regular expression
searching provided by this package has excellent worst-case performance” [86].
In Table 4.1 we report the two main approaches to regular expression matching,
their complexity with respect to the length of input strings, and some of the pro-
gramming languages and matching engines that use them. Observe that there are
also other approaches to regular expression matching, such as derivatives-based
matching [61, 63, 99] (see Section 3.2), but they are not widely used in matching
engines.

Observe that even if backreferences come at the cost of exponential match-
ing, there are various scenarios in which the enhanced expressiveness is highly
beneficial. An example is text editors, where programmers work on possibly large
code bases, and being able to express advanced patterns can greatly improve the

44 CHAPTER 4. REDOS VULNERABILITIES ANALYSIS

1 import re
2 email_regex = r’^([0-9a-zA -Z]([-.\w]*[0-9a-zA-Z])*@(([0 -9a-zA-Z

])+([-\w]*[0-9a-zA -Z])*\.)+[a-zA-Z]{2 ,9})$’
3 attack = ’a’ * 50
4 re.match(email_regex , attack)

FIGURE 4.1. Python program that matches a dangerous string against a vulnerable
regular expression

code editing speed. For instance, the popular Vim text editor [100] allows users
to use backreferences to search and replace complex patterns. Another relevant
case involves command line utilities, such as sed, that are specifically designed
to search, replace, and delete patterns in large chunks of text. In such situations,
the enhanced expressiveness greatly improves the capabilities and, therefore, the
usefulness of the tool. Furthermore, backreferences are part of the POSIX stan-
dard for regular expressions [101], which highlights the fact that such features
are well-established and unlikely to disappear from mainstream programming
languages anytime soon.

4.2.2. ReDoS vulnerabilities

The majority of programming languages that offer support for regular expres-
sions in standard libraries are vulnerable to ReDoS attacks. Figure 4.1 shows an
example of a Python program that matches a string with a vulnerable regular ex-
pression that validates email addresses. The regular expression is taken from the
Regexlib [102] database, and possibly many programmers used it. Executing the
program on a modern computer with a 4GHz Intel Core i7-4790K CPU takes more
than 24 hours. In Section 4.4, we give in-depth description of ReDoS vulnerabilities,
but here we informally introduce why this behaviour arises. Consider the input
string a50 and the subexpression ([-.\w]*[0-9a-zA-Z])*: a can be matched in
[-.\w]* or in [0-9a-zA-Z]. This implies that in ([-.\w]*[0-9a-zA-Z])* there are
four paths to match aa , eight for aaa, and in general 2n for an. Normally, the
matching engine accepts the first match, but here, as @ does not appear in the
string, it exhaustively explores all 250 paths before concluding that no match is
possible for a50 in the regular expression.

Most programming languages employ matching engines with exponential

4.2. BACKGROUND 45

worst-time complexity to support backreferences and lookarounds [79, 80]. Since
our analysis is limited, for now, to classic regular expressions, we, as many other
analyzers, do not support such features. Nevertheless, our approach is sufficient to
analyze the great majority of regular expressions in real-world applications: in [67]
the authors found that in nearly 4000 Python projects, only 4% of the regular ex-
pressions use lookarounds and up to 0.4% use backreferences. Yet, recent surveys
determined that up to 10% of the web services they considered present ReDoS
vulnerabilities [36]. This highlights how programmers use vulnerable matching en-
gines while only occasionally taking advantage of advanced features, andmotivates
the need for a sound ReDoS analyzer even limited to classic regular expressions.

4.2.3. ReDoS detection

There are three main approaches to ReDoS detection:

Heuristics-based static detection. Heuristics-based static analyzers are tools that
try to determine whether a regular expression is vulnerable or not using
heuristics. They usually match the constructs of the input regular expression
against a set of potentially dangerous patterns. For instance, SAFE-REGEX [75]
checks that regular expressions do not present nested stars. By performing
simple syntactic checks, these tools are typically faster than others. On the
other hand, since they do not rely on formal semantics, they can report both
false positives and false negatives, often resulting in low-quality outcomes.
In our experimental evaluation in Chapter 5 , we demonstrate that these tools
produce unsatisfactory results. The tools SAFE-REGEX [75], REGEXPLOIT [76],
and REDOS-DETECTOR [77] are examples of heuristics-based static analyzers.

Semantics-based static detection. There aremanyapproaches to semantics-based
static ReDoS detection [69, 70, 71, 72], and they all rely on automata. In those
frameworks, regular expressions are first transformed into automata, which
are then analyzed to determine whether they are vulnerable or not. Themain
problem is that transforming regular expressions into automata can remove
or inject vulnerabilities. This is often a source of both false positives and false
negatives. We discuss semantics-based static analyzers based on automata
in detail in Section 4.6, and we compare them to our approach which is also

46 CHAPTER 4. REDOS VULNERABILITIES ANALYSIS

semantics-based, but operates on regular expressions instead of automata.

Dynamic detection. A dynamic analyzer generates strings that are fed to the
matching engine. Then, the tool measures the time for the matching and
determines whether a regular expression is vulnerable or not. These tools
are sensibly slower than static analyzers, because performing testing on
exponential algorithms can be excessively time-consuming. While it is possi-
ble to configure generic fuzzers, such as SLOWFUZZ [103], to detect ReDoS
vulnerabilities, in [73] the authors present RESCUE: a more precise gray-box
approach which leverages a genetic algorithm to efficiently generate input
strings.

As described in Chapter 5, in our experiments we find that heuristics-based
static analyzers raise a sensibly higher number of false positives and false negatives
compared to other approaches. Nevertheless, heuristics-based detectors are the
mostly used tools in practice. For instance, SAFE-REGEX [75] averages from 18,000
to 20,000 downloads per week on NPM [104].

4.2.4. Backtracking regular expressionmatching

In this section, we provide the pseudocode of the matching procedure. While it is
simple and concise, it models the concrete behaviour of realistic matching engines.
The pseudocode ignores details specific to a particular implementation, giving a
high-level description of the procedure. Our algorithm is a trivial adaptation of
the one presented in [89], which models Java’s matching engine. Classic textbooks
about regular expressions [79, 80] confirm that matching engines in standard
libraries employ a backtracking procedure for the matching. As backreferences
and lookarounds are, for the moment, not in the scope of our analysis, we present
a simple version of the matching procedure that does not consider them.

In what follows, we assume that regular expressions automatically remove ϵ in
the concatenation (this is known as a smart-constructor, see Section 3.2), so thatR ·ϵ
and ϵ · R are always simplified to R. This allows representing regular expressions
as they are implemented in programming languages, where ϵ cannot be inserted
by the user in the concatenation. We define two functions to deconstruct the

4.2. BACKGROUND 47

Algorithm 1:Matching algorithm pseudocode
1 function match(R : R,w : Σ∗,C : ℘(R))→ B
2 if R ∈ C then
3 return ff
4 switch (regex-head(R), regex-tail(R)) do
5 case (ϵ, ϵ) do
6 return w = ϵ

7 case (a,R1) do
8 if w = aw1 then return match(R1,w1, ∅)
9 else return ff
10 case (R1 | R2,R3) do
11 return match(R1R3,w,C) ∨ match(R2R3,w,C)
12 case (R∗1 ,R2) do
13 return match(R1R∗1R2,w,C ∪ {R

∗
1R2}) ∨ match(R2,w,C)

concatenation of a regular expression R.

regex-head(R) ≜

regex-head(R1) if R = R1R2

R otherwise
(4.1)

regex-tail(R) ≜

regex-tail(R1) · R2 if R = R1R2

ϵ otherwise
(4.2)

We define the function nstars : R→ N that returns the number of stars in a regular
expression as follows.

nstars(R) ≜


0 if R = a or R = ϵ

nstars(R1) + nstars(R2) if R = R1R2 or R = R1 | R2
1 + nstars(R1) if R = R∗1

(4.3)

In Algorithm 1, we present the matching procedure. The logic operators are
short-circuit: as soon as the input word is matched, the unexplored branches of the
regular expression are not considered. The behaviour of function match depends
on the first constructor in the concatenation of the regular expression, and the
remaining portion can possibly be ϵ. The algorithm is rather trivial, but it models
two important aspects of matching engines. First, it implements a prioritization

48 CHAPTER 4. REDOS VULNERABILITIES ANALYSIS

mechanism that: (1) tries to expand the left branch before the right branch in
alternatives; (2) tries to match as many characters as possible in the body of the
stars. Second, the algorithm prevents infinite ϵ-matching loops. Consider (ϵ | a)∗:
if we remove line 3, the procedure keeps expanding the body of the star forever,
never consuming any character of the input string. To prevent this, when a star is
expanded, it is inserted in C, that is the set of stars that cannot be expanded again.
Initially, Cmust be the empty set. The stars are removed from C only when at least
one character is matched.

Observe that usually in matching engines the match is successful even if just
a prefix of the word matches the regular expression [79, 80], and this is known
as submatch or partial match semantics. We can easily model this behaviour by
appending Σ∗ at the end of regular expressions [70]. For the sake of simplicity and
without loss of generality, we assume that the match is successful only if the entire
word is matched (fullmatch semantics). Since real-world matching engines use
the partial match semantics, our implementation of the analysis (see Chapter 5)
assumes instead by default such semantics. The translation between the two simply
rewrites R ∈ R as RΣ∗.

4.3. Regular expressionmatching semantics

In this section, we first define a small-step operational semantics as a transition
relation between the configurations of the matching engine. We then use it to put
forward a tree semantics that precisely describes the steps performed during the
matching. Lastly, we use the semantics to formally define ReDoS vulnerabilities.

We extend R to represent whether a star has been expanded and not a single
character has been matched yet. The syntax of a regular expression R ∈ RT is
given by the following grammar.

R ∈ RT (Transitional regular expressions)

R := ϵ | a ∈ Σ | (R1 | R2) | R1 · R2 (or R1R2) | R∗1 | R
∗
1

It differs from traditional regular expressions for the closed star, namely R∗. It is a
star that cannot be expanded again in order to prevent infinite ϵ-matching loops.
We will formalize this concept with the transition relation. The closed stars avoid

4.3. REGULAR EXPRESSIONMATCHING SEMANTICS 49

the necessity to keep a separate set of expressions (C in Algorithm 1) during the
matching: the information is implicitly included in the regular expression.

We call a pair in RT × Σ∗ ≜ Sr amatching engine state, and it describes the con-
figuration of the matching engine. The first component is the regular expression
that the matcher is expanding, and the second is the suffix of the input word that
still has to be matched. We define the function refresh : RT → R to transform the
closed stars back into regular stars as follows.

refresh(ϵ) ≜ ϵ (4.4)

refresh(a) ≜ a (4.5)

refresh(R1 | R2) ≜ refresh(R1) | refresh(R2) (4.6)

refresh(R1 · R2) ≜ refresh(R1) · refresh(R2) (4.7)

refresh(R∗1) ≜ refresh(R1)∗ (4.8)

refresh(R∗1) ≜ refresh(R1)∗ (4.9)

We define the set of actions as A ≜ {G#,H#,⊛,# } ∪ {⊚a | a ∈ Σ }. The actions
G# andH# denote when we expand, respectively, the left or the right branch of an
alternative, while⊛ and# correspond to expanding or ignoring a star construct.
Finally,⊚a represents the action to match a symbol a. Let a ∈ Σ and w ∈ Σ∗. We
can finally define the transition relation between states. It is not deterministic, but
sequences of actions will be ordered later in this section.

(a, aw) ⊚a−→ (ϵ,w) (4.10)

(aR1, aw)
⊚a−→ (refresh(R1),w) (4.11)

(R1 | R2,w)
G#−→ (R1,w) (4.12)

((R1 | R2)R3,w)
G#−→ (R1R3,w) (4.13)

(R1 | R2,w)
H#−→ (R2,w) (4.14)

((R1 | R2)R3,w)
H#−→ (R2R3,w) (4.15)

(R∗1 ,w)
⊛−→ (R1R∗1 ,w) (4.16)

(R∗1R2,w)
⊛−→ (R1R∗1R2,w) (4.17)

(R∗1 ,w)
#−→ (ϵ,w) (4.18)

50 CHAPTER 4. REDOS VULNERABILITIES ANALYSIS

(R∗1R2,w)
#−→ (R2,w) (4.19)

The transition relation describes all possible choices of the matching engine ac-
cording to the state. Observe that with the ⊛ action the star becomes ∗, and it
cannot be expanded again until a character is matched. In fact, the transition
relation is not defined for R∗. After consuming a character of the input word, we
apply the function refresh to mark all stars as expandable. Observe that the tran-
sition relation describes all possible actions that Algorithm 1 might perform in a
particular state.

We now leverage the transition relation to define a tree semantics for thematch-
ing procedure. We begin by defining the set of execution traces for (R0,w0) ∈ Sr.

T((R0,w0)) ≜ { (R0,w0)
A1−→ (R1,w1)

A2−→ · · · An−→ (Rn,wn) |

∀i ∈ [0,n – 1] : Ai ∈ A and (Ri,wi)
Ai+1−→ (Ri+1,wi+1) } (4.20)

Example 4.1 (T((a∗, a)))

T((a∗, a)) = { (a∗, a),

(a∗, a) ⊛−→ (aa∗, a),

(a∗, a) ⊛−→ (aa∗, a) ⊚a−→ (a∗, ϵ),

(a∗, a) ⊛−→ (aa∗, a) ⊚a−→ (a∗, ϵ) #−→ (ϵ, ϵ),

(a∗, a) ⊛−→ (aa∗, a) ⊚a−→ (a∗, ϵ) ⊛−→ (aa∗, ϵ),

(a∗, a) #−→ (ϵ, a) }

We denote the last state of a trace t as ℓ(t) and we define the set of complete
execution traces as Tc((R,w)) ≜ { t ∈ T((R,w)) | ℓ(t) ↛ }. Observe that Tc((R,w))
represents all possible executions of the matching engine from (R,w) up to a state
in which it is not possible to continue.

4.3. REGULAR EXPRESSIONMATCHING SEMANTICS 51

Example 4.2 (Tc((a∗, a)))

Tc((a∗, a)) = { (a∗, a)
⊛−→ (aa∗, a) ⊚a−→ (a∗, ϵ) #−→ (ϵ, ϵ),

(a∗, a) ⊛−→ (aa∗, a) ⊚a−→ (a∗, ϵ) ⊛−→ (aa∗, ϵ),

(a∗, a) #−→ (ϵ, a) }

We say that two traces are part of the same matching run if they have the same
initial state. To build the matching tree, we need to order the traces from the first
that will be explored to the last. Let t1, t2 be two complete execution traces in the
same matching run, and let (R1,w1) be the last state in the longest common prefix
between t1 and t2. We impose a lexical order ⊑ such that t1 ⊑ t2 iff the action
chosen by t1 after (R1,w1) is either G# or ⊛. This order assigns higher priority to
the traces that choose to expand the left branch of the alternative or to expand
the body of the star, which is the standard behaviour of matching engines. Let T
be a set of complete execution traces such that all of them are part of the same
matching run. We denote with O⊑(T) the sequence of traces in T ordered by⊑.

Example 4.3 ((O⊑ ◦ Tc)((a∗, a)))

(O⊑ ◦ Tc)((a∗, a)) = (a∗, a)
⊛−→ (aa∗, a) ⊚a−→ (a∗, ϵ) ⊛−→ (aa∗, ϵ),

(a∗, a) ⊛−→ (aa∗, a) ⊚a−→ (a∗, ϵ) #−→ (ϵ, ϵ),

(a∗, a) #−→ (ϵ, a)

Observe that (O⊑ ◦ Tc)((R,w)) corresponds to the ordered sequence of all com-
plete execution traces. During the concrete execution, some of them will never be
explored, because as soon as the state (ϵ, ϵ) is found, the procedure terminates.
We want to remove from (O⊑ ◦ Tc)((R,w)) those traces that appear after (ϵ, ϵ).
Let S = t1, t2, . . . , tn be a sequence of complete execution traces. We denote by
Fϵ(S) the sequence t1, t2, . . . , tk such that tk is the first trace for which it holds
that ℓ(tk) = (ϵ, ϵ). If there is no such trace, then k = n (i.e., there is an exhaustive
exploration of all the traces before failing).

52 CHAPTER 4. REDOS VULNERABILITIES ANALYSIS

(a∗, a)

(aa∗, a)

(a∗, ϵ)

(aa∗, ϵ) (ϵ, ϵ)

A. Representation of Ja∗K(a)

((a | a)∗, ab)

((a | a)(a | a)∗, ab)

(a(a | a)∗, ab) (a(a | a)∗, ab)

((a | a)∗, b) ((a | a)∗, b)

((a | a)(a | a)∗, b) (ϵ, b) ((a | a)(a | a)∗, b) (ϵ, b)

(a(a | a)∗, b) (a(a | a)∗, b) (a(a | a)∗, b) (a(a | a)∗, b)

(ϵ, ab)

B. Representation of J(a | a)∗K(ab)

FIGURE 4.2. Examples of matching trees

Example 4.4 ((Fϵ ◦ O⊑ ◦ Tc)((a∗, a)))

(Fϵ ◦ O⊑ ◦ Tc)((a∗, a)) = (a∗, a)
⊛−→ (aa∗, a) ⊚a−→ (a∗, ϵ) ⊛−→ (aa∗, ϵ),

(a∗, a) ⊛−→ (aa∗, a) ⊚a−→ (a∗, ϵ) #−→ (ϵ, ϵ)

Let S be a sequence of complete execution traces such that all of them are part
of the same matching run. We denote by . (S) the tree obtained by merging the
common prefixes in S.

Definition 4.1 (Matching tree semantics)
Let R ∈ RT and w ∈ Σ∗. Thematching tree semantics of R with respect to w is
given by the following tree.

JRK(w) ≜ (. ◦Fϵ ◦ O⊑ ◦ Tc)((R,w))

Example 4.5 (Matching tree)
Figure 4.2 represents some examples of matching trees. Figure 4.2A repre-
sents a tree in which the matching is successful, while in Figure 4.2B the
matching fails. One can reconstruct the steps carried out by the matching
engine by doing a depth-first left-to-right traversal of the semantic tree.

We denote the number of nodes in a tree t with |t| and its set of leaves as

4.3. REGULAR EXPRESSIONMATCHING SEMANTICS 53

leaves(t). We define the language recognized by R ∈ RT as follows.

L(R) ≜ {w ∈ Σ∗ | (ϵ, ϵ) ∈ leaves(JRK(w)) } (4.21)

We now give the definition of ReDoS vulnerability, using the one that firstly ap-
peared in [71], but adapted to our semantics.

Definition 4.2 (ReDoS Vulnerability)
Let R ∈ R and n ∈ N.

MR(n) ≜ max{ |JRK(w)| | w ∈ Σ∗, |w| ≤ n }

We say that R has a ReDoS vulnerability iffMR ∈ Ω(2n).

Observe that we characterize ReDoS vulnerabilities in terms of the matching
trees’ size, while in practice we are interested in the execution time for thematching
procedure. It is sufficient to observe thatmatching engines explore, one at the time,
all the states in thematching tree, so that there is a direct correspondence between
the size of matching trees and the execution time for the matching procedure.

Example 4.6 (ReDoS vulnerability)
The regular expression (a | a)∗ presents a ReDoS vulnerability. Consider the
word anb: the first a can be matched both in the left or in the right branch
of the alternative. This implies that there are four possibilities to match the
second a, namely by expanding left-left, left-right, right-left or right-right. In
general, there are 2n possible expansions to match an. All of them will be
explored because the suffix b causes the match to fail, thereby forcing the
engine to expand all of them.

The following lemma formalizes the intuition that the length of input words is
an upper bound for the height of matching trees.

Lemma 4.1 (Height of matching tree)

54 CHAPTER 4. REDOS VULNERABILITIES ANALYSIS

Let R ∈ RT,w ∈ Σ∗, and h be the height of JRK(w).

h = O(|w|)

In this section, we put forward a small-step operational semantics that formal-
izes the behaviour of matching engines. Similarly to trace semantics for programs,
our semantics describes the behaviour of a regular expression in terms of a set of
trees (one for each word). As we show in the next section, by relying on a precise
mathematical description of the regular expression semantics, it is possible to
reason on the behaviour of all possiblematching runs. This opens the possibility to
prove properties of the behaviour of regular expressions, similarly to how program
analysis techniques prove properties of programs.

4.4. ReDoS vulnerabilities detection

In this section, we describe a framework to statically detect exponential ReDoS
vulnerabilities. The analysis we propose derives from a regular expression an
overapproximation of the set of dangerous words, namely those that can possibly
cause an exponential ReDoS attack. The analysis is sound but not complete: any true
vulnerabilitywill be reported, but the algorithmcan occasionally raise false positives
(i.e., harmless regular expressions can be considered dangerous). Nevertheless,
as discussed in Chapter 5, our experiments show that in practice our approach is
precise and reports only 49 false positives over 74,669 regular expressions.

Intuitively, there is an exponential ReDoS vulnerability in a star if it is possible
to match a word with at least two different traces. Consider (a | a)∗: a is matched
in two traces by expanding the left or the right branch of the alternative. This
implies that there are four traces to match aa, eight for aaa and in general 2n for an.
Nevertheless, J(a | a)∗K(an) is not an exponential tree, because the match succeeds
after expanding the left branch of the alternative n times. By appending a character
that makes the match fail after an, an attacker can force the matching engine to
explore all traces, effectively performing a ReDoS attack. This is the reason why
|J(a | a)∗K(anb)| = Θ(2n) (see Example 4.6).

First, we define a functionM2 : RT → Σ∗ to extract the set of words that are

4.4. REDOS VULNERABILITIES DETECTION 55

Algorithm 2: ComputeM2(R)
1 function M2(R : R)→ R⊥

2 return M2-rec(R, ∅)
3 function M2-rec(R : RT,E : ℘(RT))→ R⊥

4 if R ∈ E then
5 return⊥r
6 switch (regex-head(R), regex-tail(R)) do
7 case (ϵ, ϵ) ∨ (R∗1 ,R2) do
8 return⊥r
9 case (a,R1) do
10 return a · M2-rec(refresh(R1),E)
11 case (R1 | R2,R3) do
12 inter← R1R3 ∩�ϵ R2R3
13 left ← M2-rec(R1R3,E)
14 right← M2-rec(R2R3,E)
15 return inter | left | right
16 case (R∗1 ,R2) do
17 inter← R1R

∗
1R2 ∩�ϵ R2

18 left ← M2-rec(R1R∗1R2,E ∪ {R})
19 right← R∗1 · M2-rec(R2,E)
20 return inter | left | right

matched in at least two traces in a regular expression R.

M2(R) ≜ {w ∈ Σ+ | ∃t1, t2 ∈ Tc((R,w)) : t1 ̸= t2 and ℓ(t1) = ℓ(t2) = (ϵ, ϵ) }

In the analysis, we use M2, and since it is a possibly infinite language we
need an algorithm to compute a finite representation of it. The function M2 in
Algorithm 2 returns a regular expression R1 ∈ R⊥ such that L(R1) = M2(R). In
Algorithm 2, we compute the intersection of two regular expressions R1,R2 ∈ RT

that does not include ϵ, and we denote it by R1 ∩�ϵ R2. It can be computed as
remove-eps(R1) ∩ remove-eps(R2), where remove-eps : RT → R⊥ removes ϵ from
the language of input expressions. The procedure is depicted in Algorithm 3.

To ensure termination, we keep track of which stars have already been ex-
panded with the parameter E. When a regular expression, in which the first con-
struct is a star, is encountered for the second time, the function returns⊥r. This
guarantees that any star will be expanded exactly once. Observe that the closed

56 CHAPTER 4. REDOS VULNERABILITIES ANALYSIS

Algorithm 3: Remove ϵ from L(R)
1 function remove-eps(R : RT)→ R⊥

2 switch (regex-head(R), regex-tail(R)) do
3 case (ϵ, ϵ) ∨ (R∗1 ,R2) do
4 return⊥r
5 case (a,R1) do
6 return a · (refresh(R1))
7 case (R1 | R2,R3) do
8 return remove-eps(R1R3) | remove-eps(R2R3)
9 case (R∗1 ,R2) do
10 return remove-eps(R1R∗1R2) | remove-eps(R2)

stars and the parameter E serve different purposes: the first guarantees termina-
tion during the concrete execution to avoid infinite ϵ-matching loops; the second
guarantees termination of the M2-rec function.

Theorem 4.1 (Correctness of M2)
Let R ∈ R.

L(M2(R)) =M2(R)

Example 4.7 (M2((a | a)∗))
Consider M2((a | a)∗), that initially invokes M2-rec((a | a)∗, ∅). First, (a | a)(a |
a)∗ ∩

�ϵ
ϵ =L ⊥r is returned; then, the recursive call M2-rec(ϵ, ∅) immedi-

ately terminates and returns⊥r as well. The most interesting recursive call is
M2-rec((a | a)(a | a)∗, {(a | a)∗}), where the first construct in the concatenation
is an alternative. The function computes and returns the nonempty intersec-
tion a(a | a)∗ ∩

�ϵ
a(a | a)∗ =L a+. Next, the algorithm invokes M2-rec(a(a |

a)∗, {(a | a)∗}), which then calls M2-rec(refresh((a | a)∗), {(a | a)∗}). Since
refresh((a | a)∗) = (a | a)∗ and (a | a)∗ is in E, the algorithm terminates at
line 5. To summarize, M2((a | a)∗) recognizes the language a+, which is exactly
M2((a | a)∗).

Example 4.8 (Nested stars and ReDoS vulnerabilities)
Heuristics-based tools often classify as dangerous regular expressions that

4.4. REDOS VULNERABILITIES DETECTION 57

have nested stars. In this example, we show how this pattern implies that the
language of words that can be matched in at least two traces is non-empty.
Consider the regular expression (a∗)∗ and the word aa. After matching the
first character a, the matching engine reaches the state (a∗(a∗)∗, a), as shown
by the following partial trace:

((a∗)∗, aa) ⊛−→ (a∗(a∗)∗, aa) ⊛−→ (aa∗(a∗)∗, aa) ⊚a−→ (a∗(a∗)∗, a)

In this configuration, it is possible to match the subsequent character a by
expanding either the left or the right star:

(a∗(a∗)∗, a) ⊛−→ (aa∗(a∗)∗, a) ⊚a−→ (a∗(a∗)∗, ϵ)

(a∗(a∗)∗, a) #−→ ((a∗)∗, a) ⊛−→ (a∗(a∗)∗, a) ⊛−→ (aa∗(a∗)∗, a) ⊚a−→ (a∗(a∗)∗, ϵ)

This implies that the language of words that can be matched in at least two
traces is non-empty. In general, nested stars can lead to this type of configu-
ration in which words can be matched in two different concatenated stars.
This implies that the regular expression might be dangerous, justifying the
decision of heuristics-based tools to classify regular expressions with nested
stars as vulnerable.
When analyzing (a∗)∗, after three recursive calls, M2-rec reaches the regular
expression a∗(a∗)∗ and returns a∗ ∩

�ϵ
(a∗)∗ =L a+. This expression is then

concatenated to the prefix that makes it possible to reach the configuration
a∗(a∗)∗, namely a. Overall, the language of words that can be matched in at
least two different traces is a · a+.

Intuitively, if there is no word that is matched in two different traces, there is
no ambiguity, and the matching is linear in the length of the input words in the
worst case. In Lemma 4.2, we formalize this intuition.

Lemma 4.2 (Linear matching with no ambiguity)
Let R ∈ RT.

M2(R) = ∅ =⇒ |JRK(w)| = O(|w|)

To understand how we take advantage of M2, consider a regular expression R∗

58 CHAPTER 4. REDOS VULNERABILITIES ANALYSIS

such that M2(R∗) ̸=L ⊥r. In this case, the set of words that are matched with at
least two traces in R∗ is not empty. Let w ∈ L(M2(R∗)). Since from R∗ there are
two traces to match w, then there are four traces to match w2, eight for w3, and
in general 2n for wn. Furthermore, for all n ≥ 1, wn ∈ L(M2(R∗)). This implies
that the words in M2(R∗) are possibly matched in an exponential number of traces.
To have an exponential matching tree, all of them must be explored. Let S ∈ R,
and consider the case in which wn is matched with R∗S. By concatenating wn

with a suffix s that causes the match to fail, it is possible to force the procedure to
exhaustively explore all traces, effectively resulting in an exponential matching
tree. The language of suffixes that make the match fail is the language of words not
accepted by R∗S, namely R∗S. This is the key insight of our analysis, namely that
M2(R∗) ·R∗S accepts an overapproximation of the language of words dangerous for
R∗S that can cause exponential matching in R∗.

With this intuition, we define the analysisE : R×R×R→ R⊥ such thatE(R,P, S)
recognizes an overapproximation of the set of words dangerous for the regular
expression P · R · S that can cause exponential matching in R.

Definition 4.3 (ReDoS analysis)
Let R,P, S ∈ R.

E : R× R× R→ R⊥

E(R,P, S) ≜



⊥r if R = ϵ or R = a

E(R1,P, S) | E(R2,P, S) if R = R1 | R2
E(R1,P,R2 · S) | E(R2,P · R1, S) if R = R1 · R2
P · R∗1 · M2(R

∗
1) · R

∗
1 · S | E(R1,P · R

∗
1 ,R
∗
1 · S) if R = R∗1

Initially, the analysis must be invoked as E(R, ϵ, ϵ). It recursively explores R,
accumulating the prefixes and the suffixes of the portion that it is considering
in P and S. When E encounters a star, in addition to calling E recursively on the
regular expression under the star, it also returns P ·R∗1 · M2(R

∗
1) ·R

∗
1S. As discussed

previously, M2(R∗1)R
∗
1S recognizes an overapproximation of the language of words

dangerous for R∗1S that can cause exponential matching in R∗1 . The first construct
P ·R∗1 in the expression accepts the language of words that the analysis determined

4.4. REDOS VULNERABILITIES DETECTION 59

to be a prefix of R∗1S. Later in this section, we prove that the words in E(R, ϵ, ϵ) are
a sound overapproximation of the words that are dangerous for R, and we also
provide an example where the analysis loses precision.

We can perform an emptiness check on E(R, ϵ, ϵ) to determine if there are
dangerous words. If the language is empty, then R is not vulnerable; otherwise, we
have a sound overapproximation of the words that can lead to ReDoS attacks.

Example 4.9 (ReDoS analysis)
Consider E((a | a)∗, ϵ, ϵ).

E((a | a)∗, ϵ, ϵ) = (a | a)∗ · M2((a | a)∗) · (a | a)∗ | E(a | a, (a | a)∗, (a | a)∗)

=L (a | a)∗ · a+ · (a | a)∗ | ⊥r
=L a+ · a∗

In this case, the analysis determined that (a | a)∗ is vulnerable to arbitrary
large sequences of as that are followed by any nonempty word not composed
of a’s only. Observe that, effectively, |J(a | a)∗K(anb)| = Θ(2n).

The following soundness theorem provides a strong guarantee that if the analy-
sis of R returns an empty regular expression, then the size of any matching tree is
at most polynomial in the length of the input word. More precisely, thematching is
at most polynomial in the number of stars that syntactically appear in the regular
expression.

Theorem 4.2 (Soundness of ReDoS analysis)
Let R ∈ R.

E(R, ϵ, ϵ) =L ⊥r =⇒ |JRK(w)| = O(|w|nstars(R))

In Appendix A we give the detailed proof of Thm. 4.2, and here we give the
intuition. The idea is that, if E(R, ϵ, ϵ) is empty, then we can bound the width of
any matching tree for R to O(|w|nstars(R)). Since the height of matching trees is
linear in the length of input words (see Lemma 4.1), we can observe that the whole
matching tree has size at most polynomial in |w|nstars(R).

60 CHAPTER 4. REDOS VULNERABILITIES ANALYSIS

Example 4.10 (Loss of precision in ReDoS analysis)
Some patterns in regular expressions can cause a loss of precision in the
analysis. Consider as example Σ∗ | (a | a)∗ and observe how the matching
procedure never explores the right (dangerous) branch of the outermost
alternative. However, since the analysis does not consider the order in which
the branches are explored (they are merged with the | constructor), it returns
a non-empty attack language:

E(Σ∗ | (a | a)∗, ϵ, ϵ) = E(Σ∗, ϵ, ϵ) | E((a | a)∗, ϵ, ϵ) =L a+a∗

While our analysis can raise false positives, our experiments show that over
74,669 regular expressions taken from real-world use cases, this happens only
in 49 instances. This shows that patterns that can make our analysis lose
precision rarely occur in practice.

The fact that the analysis returns the language of dangerouswords can be useful
in different scenarios. For example, it is possible to use our algorithm in amatching
engine that tries to match a word only if it is not in the attack language of the input
regular expression. The analysis we put forward can also be integrated with a
static analyzer for high-level programming languages: by paring our framework
with a sound string analysis, it should be possible to prove the absence of ReDoS
vulnerabilities in real-world applications. This is left as future work.

As discussed in Section 4.2.4, in thisworkwe assume that thematch is successful
only if the entire word matches the regular expression (fullmatch semantics).
Nevertheless, matching engines usually consider the match to be valid even if just
a prefix of the word matches the expression (partial match semantics). To simulate
this behaviour, we can simply append Σ∗ at the end of the patterns. Observe that
the complement of the universal language is⊥r, so that if Σ∗ is the only suffix of a
dangerous star, the exponential behaviour cannot be triggered. As discussed in
this section, this is because there exists no suffix that can make the match fail.
The implication is that patterns that are dangerous in the fullmatch semantics,
can be harmless in the partial match semantics. Since the latter is the one used in
matching engines, our implementation (see Chapter 5) assumes it by default, but
the translation between the two is trivial.

4.5. ANALYSIS EXTENSIONS 61

Remark 4.1 (Relation with abstract interpretation)
In this work, we did not express directly our analysis in the abstract interpre-
tation framework [26] (discussed in Part III of this manuscript), as regular
expressions are simpler entities than programs. However, we observe that
there is a strong correlation between our framework and some underlying
ideas in program analysis by abstract interpretation. In fact, similarly to
abstract interpretation techniques for programs, our analysis proceeds by
structural induction, accumulating semantic information on the reachable
states of the matching engine. While in program analysis the abstract do-
mains collect information about the values of the variables, in our analysis
we collect information about the prefixes and suffixes of a regular expression
with the P and S parameters. Similarly to abstract interpretation, we do not
actually execute the matching (respectively, program), but we rather perform
an “abstract execution”, where we assume that any word (respectively, pro-
gram memory) can be given as input. This is the fundamental reason why
we lose precision, which again draws a parallel with program analysis by
abstract interpretation. To summarize, even though we did not directly rely
on the abstract interpretation framework, we leveraged the same underlying
principles to put forward a sound analysis. We believe it would be possible to
express our analysis directly in the abstract interpretation framework, even
if we preferred a simpler characterization in terms of the size of matching
trees.

4.5. Analysis extensions

In this section, we describe possible interesting extensions of our analysis, which
we would like to explore in future work.

4.5.1. Backreferences

Backreferences are non-regular constructs, and they cannot be expressed using
only regular patterns [81].We believe that it is possible to automatically overapprox-
imate regular expressions with backreferences in a sound way by substituting the
backreferenceswith the capturing group that they refer to. For example, the Python

62 CHAPTER 4. REDOS VULNERABILITIES ANALYSIS

regular expression (a)b(\1|a)* could be substituted with (a)b(a|a)*, where \1
has been replaced with a. This makes it possible to support regular expressions
with backreferences without any modification to our analysis. The substitution
overapproximates the language recognized by the expressions, and we believe it
also preserves the existing ReDoS vulnerabilities. The fundamental observation is
that backreferences at runtime are substituted with the string that is matched by
the capturing group that they refer to. As a result, replacing them with the more
expressive–and therefore potentially dangerous–capturing group with stars and
unions does not eliminate any vulnerability. On the other hand, this technique
could inject new vulnerabilities. Consider, for instance, the non-dangerous Python
expression (a)*b(\1)* which recognizes the language { anban | n ∈ N }. If we
replace the backreference \1 with a*, we obtain (a)*b(a*)*, which, due to the
nested star, presents a ReDoS vulnerability (see Example 4.8).

In order to prove the soundness of our substitution technique, our semantic
framework must be extended to natively support backreferences. Then, we must
prove that replacing the backreferences with the capturing group that they refer
to does not discard any existing vulnerability. In future work, we would like to
formally prove the soundness of this extension and implement it.

4.5.2. Lookaround assertions

Lookarounds are features that enable users to specify assertions on the characters
that will be matched (or have been matched) by a pattern. In case the assertion
is not respected by the input string, the match fails. For instance, the Python ex-
pression a*(?!b)[a-z]matches strings composed of an arbitrary number of as,
followed by any lower case letter that is not b. The expression (?!b) is a negative
lookahead, namely a lookaround that asserts that the pattern b is not matched after
(?!b). Lookarounds can be positive when they assert that a pattern ismatched, or
negative if they assert that a patterns is not matched. Furthermore, they can be
divided into lookaheads if the condition concerns what is matched after the asser-
tion, or lookbehinds if they restrict the language of words that have been matched
previously. Given that lookaround assertions can be encoded using only regu-
lar constructs [82, 83, 84], it is tempting to believe that we can straightforwardly
transform regular expressions with lookarounds into automata, and subsequently

4.5. ANALYSIS EXTENSIONS 63

revert these automata back into expressions without lookarounds. This would
make it possible to support lookarounds without any modification to our analysis.
Nevertheless, this approach has a major pitfall: the known conversion methods
from regular expressions to automata (see Section 3.3) are not guaranteed to pre-
serve ReDoS vulnerabilities. This implies that the aforementioned technique could
possibly lead to both false positives and false negatives during the analysis. In
Section 4.6.1 we discuss how this approach is a common pitfall for static analysis
ReDoS detection techniques.

A simple solution is to run our analysis on the input expression ignoring the
lookarounds, and then run separate analyses for each assertion. If none of them
presents a vulnerability, then the overall expression is safe. For instance, in order to
analyze a*(?!(b|b)*)[a-z], we should consider separately the expressionwithout
lookarounds (namely a*[a-z]), and then (b|b)*. The analysis would classify the
original expression as dangerous, as (b|b)* is vulnerable. This method has the
disadvantage of not being able to capture an overapproximation of the attack
language, as each assertion is analyzed individually. Nevertheless, the analysis is
sound, as it classifies as dangerous all the expressions that present a vulnerability.

Abetter solutionwouldbe to extendour semantic framework tonatively support
lookarounds. This would make it possible to formally reason on the assertions on a
semantic level, and allow us to extract an overapproximation of the attack language.
An example of formal semantics for lookaround assertions is given in [84].

4.5.3. Superlinear matching analysis

In this work, we focused our attention on exponential ReDoS vulnerabilities. Never-
theless, superlinearmatching could be dangerous if the exponent of the polynomial
is high. Consider, for instance, what happens if the string anb is matched against
the regular expression a∗a∗. The word can be matched in n different ways: it is
enough to choose an index i, for 0 ≤ i ≤ n, at which an is split. Then, the first star
matches ai, and the second matches an–i. Every match costs up to n steps, all of
which will be expanded due to the fact that the engine fails to accept the suffix b.
As a result, the matching costs quadratic time.

While in the exponential analysis it is enough to consider the language of words
that can be matched in two traces in a single star, this reasoning is not sufficient

64 CHAPTER 4. REDOS VULNERABILITIES ANALYSIS

q0 q1
a

a

FIGURE 4.3. Glushkov’s automaton for (a∗)∗

for superlinear matching. In fact, superlinear behavior arises when the ambiguity
is due to stars that recognize the same language and are concatenated. Since
reasoning on each individual star is not sufficient, superlinear matching is more
challenging to detect. A superlinear analysis should explore a regular expression by
induction, keeping track of the prefixes and suffixes for each individual constructor.
Then, once a star is detected, the analysis should intersect the language of words
recognized by the star with the language of the suffixes. If the intersection is not
empty and contains words of arbitrary length, this implies that there exists a
suffix star that accepts the same language. Therefore, superlinear matching can
potentially occur.

Observe that being able to determine the exponent of the polynomial is funda-
mental: quadratic and cubic matching is, in most real-world cases, not considered
dangerous. Since linear and quadratic matching behave similarly in terms of num-
ber ofmatching steps, dynamic ReDoS detectors such as RESCUE [73] usually do not
report those vulnerabilities. Once the matching has an exponent of four or more,
then the vulnerability is considered dangerous. While the detection of superlinear
matching can be implemented with the aforementioned technique, it is still not
clear how to determine the exponent of the polynomial.

4.6. Related work

In this section, we discuss related work. In particular, we describe existing ReDoS
detection techniques, ReDoS mitigation frameworks, and the relation between our
semantics and regular expression derivatives [63, 99].

4.6. RELATED WORK 65

q0q1 q2 q3q4

a

b
b

a

a b

a

a

a

a

aa

FIGURE 4.4. Glushkov’s automaton for Σ∗ | (a | a)∗ over Σ = { a, b }

4.6.1. Semantics-based static ReDoS detection

Wüstholz et al. [72] put forward an analysis based on automata to detect ReDoS vul-
nerabilities, and they implement it in the REXPLOITER tool. The authors classify an
automaton as vulnerablewhen it presents a state fromwhich aword can bematched
by following two different paths, and then come back to the same state (see [72,
Thm. 1]). Their approach is the closest to ours, since they can as well extract the
language of dangerous words. However, the analysis is not sound nor complete,
because transforming a regular expression into an automaton can introduce or
remove vulnerabilities. For example, by applying Glushkov’s construction (see Sec-
tion 3.2) to the vulnerable regular expression (a∗)∗ we obtain the non-vulnerable
automaton (with respect to the definition of vulnerability given in [72]) represented
in Figure 4.3. Since they do not define an algorithm to transform regular expres-
sions into automata that preserves vulnerabilities, the analysis can report both
false positives and false negatives, and our experiments described in Chapter 5
confirmed this. Observe that any approach based on traditional automata cannot
be complete. Since finite automata lack a mechanism for prioritizing transitions
between states, any attempt to precisely capture all vulnerabilities with respect
to the original expression is hopeless. Consider for instance the non-vulnerable
regular expression Σ∗ | (a | a)∗ over the alphabet Σ = { a, b } (see Example 4.10).
If we apply Glushkov’s construction to it, we obtain the automaton in Figure 4.4.
While the regular expression is non-vulnerable due to the fact that the dangerous
subexpression (a | a)∗ is never expanded, the automaton is vulnerable with respect
to the definition of vulnerability given in [72].

The RXXR2 tool is a static analyzer for exponential ReDoS vulnerabilities that
infers exploit strings [70]. It is the successor of RXXR [69], that turned out to be

66 CHAPTER 4. REDOS VULNERABILITIES ANALYSIS

unsound. Introducing a novel approach based on NFAs with prioritized transitions,
RXXR2 infers strings that can be pumped and lead to exponential matching. While
the algorithm is sound and complete with respect to automata, transforming
regular expressions to automata can introduce or remove vulnerabilities. Similarly
to REXPLOITER, they assume that the input expression has been converted into
an automaton following one of the standard constructions, so that the analysis is
actually neither sound nor complete.

The framework of prioritized NFAs (pNFAs) [89, 105] has been leveraged by
Weideman et al. [71] to build the RSA (RegexStaticAnalysis) static analyzer. The
authors introduce an algorithm to translate regular expressions into automata
that preserves the ReDoS vulnearbilities. The automata are analyzed with the
framework described in [106] to determine the degree of ambiguity [107], which
allows inferring whether there are ReDoS vulnerabilities or not. The full mode
performs a sound and complete analysis, while the simplemode is only sound, but
it usually runs faster. We observe that while the analysis is complete, it is strictly
less expressive than ours. In fact, their framework cannot be used to extract the
attack language for a regular expression, but only a finite number of exploit strings.
For this reason, the two approaches are suitable for different uses: tools that need
the specification of dangerous words, such as static analyzers, cannot rely on RSA
to extract it. Furthermore, our algorithm performs a single emptyness check of the
attack language, while their analysis performs a universality check for each state
of the automaton, resulting in a strictly higher complexity. Our experiments (see
Chapter 5) confirm that our analysis has a substantial performance advantage
over the one proposed in [71]. While our ReDoS detector and RSA are the only
tools based on sound techniques, the latter still produces false positives and false
negatives in practice, possibly due to bugs in the implementation (see Chapter 5).

4.6.2. Dynamic ReDoS detection

A radically different approach to ReDoS detection is dynamic analysis. The RESCUE
tool [73] leverages a genetic algorithm to efficiently generate potentially dangerous
words, that are then matched by the Java matching engine to determine if they
are truly dangerous. For this reason, the tool cannot report false positives. On
the other hand, there is no guarantee about the absence of false negatives. The

4.6. RELATED WORK 67

gray-box approach makes it easy to support a wide variety of advanced features,
but it has the disadvantage of being several orders of magnitude slower than static
analyzers. The analysis is not deterministic, and due to its dynamic nature it is not
expressive enough to compute the attack language.

Generic fuzzers, such as SLOWFUZZ [103], can be configured to detect ReDoS
vulnerabilities. Even if they can be effective to report true vulnerabilities, a gray-
box approach that has (partial) knowledge about the underlying matching engine
is more effective [73].

4.6.3. Heuristics-based static ReDoS detection

Heuristics-based static analyzers try to report vulnerabilities by matching poten-
tially dangerous patterns against the constructors of a regular expression. For
instance, SAFE-REGEX [75] checks that expressions do not present nested stars.
It is easy to craft an example for which this rule raises a false positive: the regu-
lar expression (a∗)∗Σ∗ has two nested stars, but since there is no suffix that can
make the matching fail (Σ∗ accepts the universal language), the expression is not
dangerous. Nevertheless, SAFE-REGEX reports that the expression is dangerous,
effectively raising a false positive. In our experiments described in Chapter 5, we
also found that both SAFE-REGEX and REGEXPLOIT raise a false negative when
analyzing the Python regular expression <project(.|\s)*?>, as they do not detect
the exponential vulnerability. The exponential behaviour can be triggered by using
as exploit string <project followed by a sequence of space characters, since spaces
can be matched by both branches of the alternative (.|\s). Heuristics-based ana-
lyzers do not have semantic information about the attack language, and they do
not perform dynamic testing either. In our experiments, we observed that these
tools report a high number of false positives and false negatives. The heuristics
employed by SAFE-REGEX [75], REGEXPLOIT [76] and REDOS-DETECTOR [77] are not
formalized in any work, and they can potentially change in the future. Not having
semantic information also implies that it is impossible for this class of detectors
to differentiate the type of the vulnerabilities reported, namely if the matching is
exponential or superlinear.

68 CHAPTER 4. REDOS VULNERABILITIES ANALYSIS

4.6.4. ReDoSmitigation

Recently, many techniques have been proposed to mitigate ReDoS attacks. Cody-
Kenny et al. [108] use genetic programming to substitute vulnerable regular ex-
pressions with safe ones. Li et al. [109] and Pan et al. [110] put forward techniques
for automatic expression repair based on examples. In [111] the authors introduce
a matching algorithm that leverages selective memoization to mitigate ReDoS
attacks while supporting advanced regular expression features. The matching
algorithm proposed in [84] supports lookaround assertions, while keeping the
matching linear in the length of the words. Sophisticated techniques based on GPU
matching [112, 113] and state-merging algorithms [114] have also been proposed to
speedup the matching.

4.6.5. Regular expression derivatives

Derivatives-based matching [63, 99, 61] is a technique to perform regular expres-
sion matching. It relies on the fundamental concept of derivative of a regular ex-
pression (see Section 3.2). In general, given a symbol a, the derivative of a regular
expression R with respect to a is an expression that recognizes only those suffixes
of strings with a leading a accepted by R. Brzozowski’s derivatives [63] are related
to DFAs, while Antimirov’s partial derivatives [99] are related to NFAs, and both
can be leveraged to perform regular expression matching. Matching engines in
widely used programming languages do not use derivatives-based matching, as
they rely on backtracking algorithms [79, 80, 89].

There are some similarities between our tree semantics andBrzozowski’s deriva-
tives. The connection lies in the fact that when we match the first character from
the state (R, aw), the regular expressions that we find in the states after matching
a recognize the same language accepted by the derivative of R with respect to
the character a. Nevertheless, there are substantial differences between the two
approaches. In fact, our semantics is designed to capture the exact states explored
by the matching engine, and in which order they appear. For instance, we can
observe that after matching the first a starting from ((a | a)∗, ab), we explore the
state ((a | a)∗, b) exactly twice. This would not be possible by using derivatives, as
they do not enjoy a notion of order over the expanded expressions. Furthermore,
to mimic the behaviour of matching engines we added the closed star constructor,

4.7. CONCLUSION 69

which is not needed in derivatives. Since regular expression derivatives cannot
precisely capture the state of thematcher, they are not suitable to formally describe
and reason about ReDoS vulnerabilities.

4.7. Conclusion

In this chapter, we defined a tree semantics for regular expressionmatching, which
we leveraged to design a sound static analysis that detects ReDoS vulnerabilities.
To the best of our knowledge, our ReDoS detection framework is the first one that
operates directly on regular expressions without having to resort to automata. This
allowed us to easily reason about the concrete behaviour of complex matching
engines. Our approach is semantic, namely rooted in the formal definition of the
behaviour of thematching procedure,whichdraws aparallelwith programanalysis
techniques such as abstract interpretation.

To assess the usefulness of our analysis, we implemented it in a tool called RAT,
and we compared it to seven other ReDoS detectors. In Chapter 5 we describe our
implementation and our experimental results in detail. Our experiments show
that our tool is the only detector that is sound also in practice, as all other detectors
report false negatives. RAT does not raise any false negatives, which matches our
theoretical results and gives empirical evidence of the fact that our analysis is
effectively sound.

In future work, we would like to extend our analysis to support advanced
features such as backreferences and lookarounds. We believe that it is possible to
automatically overapproximate those features with regular constructs in a sound
way. We would also like to use the matching semantics to design a detector for
superlinear ReDoS vulnerabilities. Similarly to the exponential case, we expect
that an approach based on regular expressions can lead to an efficient and sound
analysis also for superlinear vulnerabilities. Another interesting extension of this
analysis would be to integrate our framework in a static analyzer for high-level
languages such as Python. We believe that by pairing our detection technique with
a string analysis, it is possible to prove the absence of ReDoS vulnerabilities in
real-world applications. During the analysis, when a regular expression matching
is found, the analyzer would intersect the language of dangerous words with the

70 CHAPTER 4. REDOS VULNERABILITIES ANALYSIS

possible values that the matched string can have. If the intersection is empty, this
proves that the match is safe.

Chapter 5

ReDoS Analysis Experimental
Evaluation

To assess the usefulness of the ReDoS analysis described in Chapter 4, we have
implemented it in a tool called RAT. We tested it on a dataset of 74,669 regular
expressions, andweobserved that in 99.78%of the instances the analysis terminates
in less than one second. We compared RAT to seven other ReDoS detectors, and we
found that our tool is faster, often by orders of magnitude, than most other tools.
While raising a low number of false positives, RAT is the only ReDoS detector that
does not report false negatives. Our approach based on regular expressions not
only eliminates the complexities related to using automata, but also opens the
possibility to easily introduce optimizations.

In this chapter, we present the results obtained in our experimental evaluation.
First, in Section 5.1 we describe our experimental setup. Then, in Section 5.2 and
Section 5.3 we respectively present the performance and precision results, which
we further comment in Section 5.4.

5.1. Experimental setup

To assess the usefulness of the analysis we put forward, we implemented it in the
RAT [40] tool (ReDoS Abstract Tester, which is publicly available on Github) in
less than 5000 lines of OCaml code, and we compared it to four other detectors.

71

72 CHAPTER 5. REDOS ANALYSIS EXPERIMENTAL EVALUATION

TABLE 5.1. Attributes of the ReDoS detectors

Type Sound Complete Language Deterministic
RAT static, semantic ✓ ✗ ✓ ✓

RESCUE [73] dynamic ✗ ✓ ✗ ✗

REXPLOITER [72] static, semantic ✗ ✗ ✓ ✓

RSA [71] static, semantic ✓ ✗ ✗ ✓

RSA-FULL [71] static, semantic ✓ ✓ ✗ ✓

RXXR2 [70] static, semantic ✗ ✗ ✗ ✓

SAFE-REGEX [75] static, heuristic ✗ ✗ ✗ ✓

REGEXPLOIT [76] static, heuristic ✗ ✗ ✗ ✓

REDOS-DETECTOR [77] static, heuristic ✗ ✗ ✗ ✓

In Appendix B we present significant implementation details of our tool. In our
experiments, we wanted to evaluate how RAT behaves in terms of precision and
performance compared to seven other ReDoS detectors. We ran our experiments
on a server with 128GB of RAM, with 48 Intel Xeon CPUs E5-2650 v4 @ 2.20GHz and
Ubuntu 18.04.5 LTS. We considered the dataset used in [73], composed of: (1) 2,992
patterns from the Regexlib platform [102]; (2) 12,499 patterns from the Snort plat-
form [115]; (3) 13,597 patterns extracted from 3,898 Python projects on Github
in [67]. To them, we added 63,352 regular expressions extracted frommodules in
the PYPI package manager [116] by Davis et al. [117]. From the dataset, we removed
the expressions that were not properly sanitized (e.g., that contained non-printable
characters) and we removed duplicates, obtaining 74,669 regular expressions. To
the best of our knowledge, it is the first time that such a large dataset of regular
expressions taken from real-world programs is used to compare the precision and
performance of ReDoS-detection tools.

In what follows, we say that a detector is sound if it identifies as vulnerable
all the truly vulnerable regular expressions, and we say that it is complete if all
the expressions it identifies as vulnerable are truly vulnerable. Sound detectors
forbid false negatives, while complete detectors forbid false positives. The tools we
compared RAT to are RESCUE [73], REXPLOITER [72], RSA [71], RXXR2 [70], SAFE-
REGEX [75], REGEXPLOIT [76] and REDOS-DETECTOR [77]. In particular, RSA allows
the user to improve the precision of the analysis (at the cost of sacrificing some
performance) with the “full” mode, that makes it the only sound and complete
tool. In our experiments, we consider the regular and the full modes of RSA as

5.2. PRECISION COMPARISON 73

two different analyzers. The only dynamic detector we compare to is RESCUE that,
due to its nature, never raises false positives. On the other hand, since it relies
on a genetic algorithm that generates the input strings with randommutations,
the analysis is not deterministic. The detectors SAFE-REGEX, REGEXPLOIT and
REDOS-DETECTOR are heuristics-based, and they do not offer any guarantees about
the soundness nor the completeness of the analysis. In Table 5.1 we summarize
the characteristics of the tools. While attributes reported in Table 5.1 summarize
the expected behaviour, we found that in practice some detectors do not match
the underlying theoretical results. For instance, while RSA-FULL should be sound
and complete, we found that it reports both false positives and false negatives.
This is probably due to bugs in the implementation. If a detector can extract the
language of dangerous words (as opposed to a single exploit string) we mark the
Language column with ✓. Static detectors are divided into semantics-based and
heuristics-based tools.

5.2. Precision comparison

We take advantage of the evaluation technique used in [73], which, to the best of
our knowledge, is the only article that compares the precision of different ReDoS
detectors. We analyze each regular expression with the detectors setting an in-
dividual timeout of 30 seconds, and then we compare the results. If any tool can
craft an exploit string of length lesser or equal to 128 characters that makes the
Java 8 matching engine performmore than 1010 matching steps, we consider the
expression to be vulnerable. During our tests, we observed that for the specific
matching engine we consider, for strings of length at most 128 characters, 1010

matching steps are a sound threshold to clearly distinguish between exponential
and non-exponential matching. We cross-reference the results of eight different
tools (some of which are, at least theoretically, sound) by concretely testing exploit
strings on a real-world matching engine, so that we infer with high confidence the
number of false positives and false negatives. Nevertheless, since we include RES-
CUE in the comparison, which is a nondeterministic detector, these numbersmight
vary slightly in different runs. We classified as vulnerable 316 regular expressions.

In Table 5.2, we report the results of the comparison. The columns correspond

74 CHAPTER 5. REDOS ANALYSIS EXPERIMENTAL EVALUATION

TABLE 5.2. ReDoS detectors precision evaluation results

OK FP FN OOT AC SKIP TIME
RAT 67,052 49 0 178(21) 0(0) 7,390(13) 1:57:20
RXXR2 [70] 60,794 93 7 10(2) 0(0) 13,765(23) 0:09:29
RESCUE [73] 33,531 0 40 32,208(43) 0(0) 8,890(34) 325:00:26
RSA [71] 57,269 193 1 789(47) 240(35) 16,177(42) 18:48:02
RSA-FULL [71] 54,857 134 1 3,138(55) 400(43) 16,139(42) 38:11:07
REXPLOITER [72] 53,931 28 180 328(1) 0(0) 20,202(104) 9:12:34
SAFE-REGEX [75] 61,272 13,376 21 0(0) 0(0) 0(0) 0:15:40
REGEXPLOIT [76] 74,050 56 140 2(0) 0(0) 421(14) 0:03:41
REDOS-DETECTOR [77] 45,694 14,218 6 2(1) 0(0) 14,749(92) 0:52:27

to: number of correctly classified regular expressions (OK); false positives (FP);
false negatives (FN); out of time (OOT); analyzer crashes (AC); skipped (SKIP) (i.e.,
not parsed); total runtime displayed as HH:MM:SS (TIME). For out of time events,
analyzer crashes, and skipped regular expressions, we report in parentheses how
many expressions in the total number are vulnerable.

Compared to other static analyzers, RAT reports a relatively low number of
false positives: 49 over the 67,074 regular expressions that it parses. The only static
analyzer that reports fewer false positives than RAT is REXPLOITER, that on the
other hand reports respectively 180 false negatives. Furthermore, REXPLOITER
skips 20,202 regular expressions. Interestingly, we observed that in practice RAT
is the only detector that does not report false negatives. This matches our theoretical
results, and it gives empirical evidence that our framework performs a sound
analysis.

If we do not consider heuristics-based tools, RAT is the detector that parses the
highest number of expressions: even more than RESCUE, which indeed supports
advanced features. This is due to the fact that RESCUE does not support some regu-
lar patterns such as named capturing groups with the syntax (?P<name>pattern),
that indeed RAT can analyze. Heuristics-based detectors can analyze a higher num-
ber of expressions: REGEXPLOIT and SAFE-REGEX skip respectively only 421 and 0
regular expressions. Since these tools do not offer guarantees about the soundness
or the completeness of the analysis, they can analyze awide variety of constructs by
simply ignoring them. On the other hand, we observe that SAFE-REGEX parses and
analyzes regular expressions that, to the best of our knowledge, are not accepted

5.3. PERFORMANCE COMPARISON 75

by any matching engine. Examples include regular expressions with unclosed
parentheses, for instance (a. The high number of false positives reported by SAFE-
REGEX and REDOS-DETECTOR makes it difficult to use them in practice. In fact,
they raise respectively 13,376 and 14,218 false alarms.

5.3. Performance comparison

In case a detector runs out of time for a few regular expressions, the total runtime
in Table 5.2 grows sharply, not representing precisely the average performance
of the tool. For this reason, we use survival plots to compare more faithfully the
performance of the detectors. On such a plot, the y-axis represents the time in
milliseconds, and the x-axis is the number of expressions such that each one can be
analyzed under the specified time, while the remaining regular expressions either
take longer to analyze or cannot be analyzed by the corresponding detector. No plot
for x-axis and detector dmeans that for 74,669–x expressions d did not successfully
complete the analysis (i.e., it either ran out of time or it had a parse/runtime error).
The plot highlights the relative performance of each tool and howmany regular
expressions can be individually analyzed under a time threshold. The survival plot
of our experiments is depicted in Figure 5.1.

Our experiments showed that RAT is able to analyze 66,926 regular expressions
over the 67,074 that it parses in less than one second each (∼ 99.78%). As expected,
RESCUE is, due to its dynamic nature, significantly slower than static analyzers.
After it, we find the cluster composed of RSA, RSA-FULL and REXPLOITER. Our
detector is on average one to two orders of magnitude faster than them for cor-
responding points on abscissa x. Even though the total runtime to analyze the
whole dataset for REDOS-DETECTOR is lower than RAT’s, the plot shows how our
tool performs significantly better on average. The same holds for SAFE-REGEX:
in 82,8% of the cases RAT is faster. The REGEXPLOIT tool performs better than
our analyzer, at the cost of raising 140 false negatives, meaning that it does not
detect more than one third of the vulnerabilities. While RXXR2 is generally faster
than RAT, we remark that RAT is performing a strictly more expressive analysis by
returning the language of dangerous words. Furthermore, according to Table 5.2,
RXXR2 is not performing a sound analysis either. We also remark that RAT analyzes

76 CHAPTER 5. REDOS ANALYSIS EXPERIMENTAL EVALUATION

10-�

10-�

10-�

100

101

102

10�

104

 0 10000 20000 30000 40000 5���� 60000 70000 80000

T
i�
�

 (
�
�
�

Solved Instances

rat
rescue

rexploiter
rsa

rsa-full
rxxr2

safe-regex
regexploit

redos-detector

FIGURE 5.1. Survival plot with a logarithmic y axis and linear x axis

6,375 more expressions than RXXR2.

5.4. Discussion

We observed that in practice RAT is one to two orders of magnitude faster than
most detectors, raises a relatively low number of false positives, and it is the only
analyzer that does not report false negatives. The approach based on semantic
trees significantly improved the design of the analysis and the ease of reasoning
about ReDoS vulnerabilities. It also allowed us to ignore the complexities related
to transforming regular expressions into automata, that for some tools are sources
of unsoundness and incompleteness. To the best of our knowledge, our analysis
for ReDoS vulnerabilities is the first that operates directly on regular expressions
without having to resort to automata. Regular expressions also make it easy to
implement many performance optimizations. We integrated in RAT three major
performance improvements, which we further discuss in Appendix B.

Character classes representation. Character classes are features commonly used

5.4. DISCUSSION 77

by programmers. For example, \d is a shortcut for 0 | 1 | . . . | 9. We extend the
regular expressions to recognize sets of characters instead of simple characters.
With a slight adjustment to our implementation, expressions containing
character classes considerably decreased their size. For example, 0 | . . . | 9
has 19 constructs, while { 0, . . . , 9 } is a regular expressions with a single
character set construct.

Symbolic operations. In our analysis, we perform a large number of intersection
and complement operations. Instead of running the algorithm to compute
them, we use extended regular expressions (see Section 3.2) in order to support
symbolic intersection and symbolic complement. When a complement or an
intersection must be computed, we simply add its symbolic representation
to the result, which is a constant time operation.

Emptiness check. The last step in the analysis is to check if the computed attack
language is empty. We decided to take advantage of the algorithm based on
derivatives put forward in [62], which, as the results of our experiments con-
firm, efficiently performs the emptiness check. The framework described
in [62] uses extended regular expressions with symbolic intersection and sym-
bolic complement, so that it can be effortlessly integrated into our imple-
mentation.

We conducted an analysis to determine the number of regular expressions
that produce false positives in both RAT and other tools. Our investigation found
that RXXR2 and RSA share respectively 21 and 26 false positives with RAT. This
overlap is significant and can be attributed to similarities in the approaches used
by these detectors. Typically, automata-based tools leverage analysis techniques
to detect nondeterministic transitions in the loops of the automata. Our algorithm
M2 performs a similar analysis on the stars of regular expressions, as it detects the
language of words that can be matched in two different traces. As stars in regular
expressions are often transformed into loops in automata, we can account for the
shared false positives between RAT and automata-based tools.

Upon examining the false positives reported by other tools, we found no corre-
lation with RAT. In the case of SAFE-REGEX and REDOS-DETECTOR, the number of
false alarms generated was too high to draw meaningful conclusions. In the case

78 CHAPTER 5. REDOS ANALYSIS EXPERIMENTAL EVALUATION

of REGEXPLOIT, the overlap is limited to 10 false positives, while RESCUE cannot
report false alarms. Although REXPLOITER employs an automata-based algorithm,
only two false positives were shared between the tool and RAT. This finding high-
lights that the translation algorithm used by REXPLOITER fails to preserve the
structure, and therefore the vulnerabilities, of regular expressions.

In our experimental evaluation, we did not find any recurring pattern in the
false positives raised by RAT. By considering a large set of regular expressions that
result in false positives, wemight build a database of rules to improve the precision
of the analysis in specific cases. Nonetheless, the soundness guarantee offered by
our theoretical framework does not trivially hold if we add human-crafted ad-hoc
rules to our analyzer. As a result, any rule that is used must be proved to preserve
the soundness of the analysis.

5.5. Conclusion

We implemented our ReDoS detection framework in the RAT tool, and to assess
the effectiveness of our technique, we compared it to seven other detectors. We
found RAT to be on average one to two orders of magnitude faster than most tools,
while giving strong guarantees about the soundness of the analysis. While raising
a relatively low number of false positives, RAT is the only ReDoS detector that did
not report false negatives. Our implementation is open source and available on
GitHub [40].

In future work, we would like to integrate into RAT the analysis extensions
discussed in Chapter 4 (see Section 4.5). For instance, it would be interesting to
add support for detecting superlinear but not exponential ReDoS vulnerabilities.
Benchmarking such an analysis requires determining the number of matching
steps to differentiate between superlinear and linear matching. This can be chal-
lenging, especially when the exponent of the polynomial is low, as quadratic and
linearmatching behave similarly. Another interesting extension of our work would
be to enhance RAT with support for backreferences and lookarounds. We believe
that incorporating support for these advanced features into RAT will enable us
to analyze the entire dataset of 74,669 regular expressions. This would make RAT
the only tool capable of supporting such a large number of expressions while

5.5. CONCLUSION 79

maintaining soundness.

80 CHAPTER 5. REDOS ANALYSIS EXPERIMENTAL EVALUATION

Part III

Verification of Security
Properties for Programs

81

Chapter 6

Static Analysis by Abstract
Interpretation

In this chapter, we study the principles of static analysis by abstract interpreta-
tion [26], which is technique co-invented in the late 70’s by Patrick and Radhia
Cousot. We start by introducing in Section 6.1 the syntax of a toy language called
WHILE, which features classic iterative constructs such as while loops and assign-
ments. Then, in Section 6.2, we give amathematical formalization of the behaviour
of the language, namely its semantics. By reasoning on the semantics of WHILE, in
Section 6.3, we introduce different classes of program properties. In Section 6.4, we
finally introduce the abstract interpretation framework, which makes it possible
to prove properties of certain programs.

6.1. Syntax

In Figure 6.1 we report the grammar of the WHILE language. The set V is the finite
set of program variables, and programs are defined as statements. WHILE has clas-
sic imperative features such as assignments x = A and conditionals if (B) St else Se.
Arithmetic expressions operate on integers, and, as we will further discuss in Sec-
tion 6.2, can incur runtime errors due to divisions by zero. Boolean expressions
evaluate to true (tt) or false (ff), and, since they can have arithmetic expressions
as subexpressions, can result in runtime errors as well.

83

84 CHAPTER 6. STATIC ANALYSIS BY ABSTRACT INTERPRETATION

P := S (Programs)
S := skip (Statements)

| x = A
| S; S
| if (B) S else S
| while (B) S

A := n ∈ Z (Arithmetic Expressions)
| x ∈ V

| A ⋄ A (⋄ ∈ { +, -, *, / })
B := tt (Boolean Expressions)

| ff
| ¬B
| B ⋄ B (⋄ ∈ { &&, || })
| A ⋄ A (⋄ ∈ { <, <=, >, >=, ==, != })

FIGURE 6.1. Syntax of the WHILE language

Example 6.1 (WHILE program computing the factorial)
The following program computes the factorial of n. The variable factorial
holds the result of the computation.

1 if (n <= 1) {

2 factorial = n;

3 } else {

4 factorial = 1;

5 i = 2;

6 while (i <= n) {

7 factorial = factorial * i;

8 i = i + 1;

9 }

10 }

Remark 6.1 (If stataments with no else branch)
If statements that consist only of the then branch are not permitted by our

6.2. SEMANTICS 85

grammar. However, they can be defined as syntactic sugar using regular if
statements as follows:

if (B) St ≜ if (B) St else skip

We sometimes use program labels to explicitly refer to program points in
statements. We assume that there is a finite set of labels L, and that statements are
annotatedwith these unique labels.When necessary, we explicitly report the labels.
Since if and while statements need to differentiate the last label in the statement
from the last label in the substatements, we use the following syntax to clearly
separate the two:

ℓ1if (B) ℓ2Stℓ3 else ℓ4Seℓ5fiℓ6

ℓ1while ℓ2(B) ℓ3Sb
ℓ4odℓ5

Since we only rarely need to explicitly annotate the programs with the labels,
for the sake of compactness, most of the times we do not report them.

6.2. Semantics

The semantics of a programming language is a precise mathematical description of
the language’s behaviour. To formally reason about the behaviour of programs, and
ultimately prove properties about those programs, we need a precise formal frame-
work to reason about them. Note that the semantics of programming languages,
such as C and JavaScript, are typically formalized in English within specification
documents [118, 119]. These documents often leave room for interpretation, leading
to potential misunderstandings. Formal methods take a different approach to the
problem, formalizing the semantics of programs as mathematical entities that do
not leave space for human interpretation. In this section, we formally define the
semantics of the WHILE language. We first study the reachability semantics, which
captures, for each program point, the set of reachable states. Then, we study a
more informative semantics known as the trace semantics, which we use to define
different classes of program properties.

86 CHAPTER 6. STATIC ANALYSIS BY ABSTRACT INTERPRETATION

6.2.1. Expressions semantics

Programmemories are the fundamental building blocks for our semantics. They
are defined as functions from variables to integers, namelym ∈ M ≜ V→ Z. We
denote the memory entries as x 7→ n. We define the memory updatem[x← n] as
follows:

m[x← n] ≜ { x 7→ n } ∪ { y 7→ n′ | (y 7→ n′ ∈ m) ∧ (y ̸= x) } (6.1)

The value represents a runtime error, and Z ≜ Z ∪ { }. The arithmetic
evaluation AJAK : M → Z definition is straightforward: it results in an error if
there is a division by zero. In our semantics, we consider only runtime errors that
arise from divisions by zero, i.e., there is no notion of overflow (we use perfect
mathematical arithmetic).

AJAK : M→ Z

AJnKm ≜ n (6.2)

AJxKm ≜ m(x) (6.3)

AJA1 ⋄ A2Km ≜


 if ⋄ = / and AJA2Km = 0

 if AJA1Km = or AJA2Km =

AJA1Km ⋄AJA2Km otherwise

(6.4)

The set B is { tt, ff }, and B ≜ B ∪ { }. The boolean evaluation BJBK : M→ B
results in a runtime error if the arithmetic evaluation results in a runtime error.

BJBK : M→ B

BJttKm ≜ tt (6.5)

BJffKm ≜ ff (6.6)

BJ¬B1Km ≜

 if BJB1Km =

¬BJB1Km otherwise
(6.7)

BJB1 ⋄ B2Km ≜

 if BJB1Km = or BJB2Km =

BJB1Km ⋄BJB2Km otherwise
(6.8)

6.2. SEMANTICS 87

BJA1 ⋄ A2Km ≜

 if AJA1Km = or AJA2Km =

AJA1Km ⋄AJA2Km otherwise
(6.9)

6.2.2. Reachability semantics

The state of a program is represented by the values of the variables, and we define
program states accordingly:m ∈ S ≜ M. Observe that while in this introductory
chapter program states and memories coincide, this will change in Chapter 7.
We define program behaviours as sets of states, namely M ∈ D ≜ ℘(S). The
statement reachability semantics SJSK : D → D is a function that, given a set of
states before the statement (i.e., a precondition), associates the set of reachable
states after the execution of the statement S (i.e., a postcondition). The semantics is
deterministic, namely it associates each input state with at most one output state.
Nondeterminism introduces complexity, and wewill incorporate it in our language
later, in Chapter 7. We now proceed to define by structural induction the semantics
SJSK. We start with the skip statement, which does not modify the input state.

SJskipKM ≜M (6.10)

The statements x = A has the effect to assign the variable x to the arithmetic
evaluation of A. Since the evaluation can result in a runtime error, the states that
present a division by zero are simply ignored in the postcondition.

SJx = AKM ≜ {m[x← AJAKm] | m ∈M ∧AJAKm ̸= } (6.11)

Example 6.2 (Assignment with division by zero)
Consider the following program that assigns x to 2 divided by y: x = 2/y. As
input we consider two states: one where y is 2, and another where y is 0.
While the first state leads to a reachable state where x is 1, the second one
results in a runtime error that is filtered out in the output reachable states.

SJx = 2/yK{ { x 7→ 0, y 7→ 2 }, { x 7→ 0, y 7→ 0 } } = { { x 7→ 1, y 7→ 2 } }

Statement composition composes the semantics of the two individual state-

88 CHAPTER 6. STATIC ANALYSIS BY ABSTRACT INTERPRETATION

ments.

SJS1; S2KM ≜ SJS2K(SJS1KM) (6.12)

If statements filter the input states according to the statement condition, exe-
cute the two branches individually, and then join the reachable states at the end.
Observe that the boolean evaluation of the condition can result in runtime errors,
so that, similarly to assignments, states that result in a division by zero during
the evaluation are filtered out. We rely on a helper function testJBK : D→ D that
computes the reachable states after a condition.

testJBKM ≜ {m ∈M | BJBKm = tt } (6.13)

SJif (B) St else SeKM ≜ SJStK(testJBKm) ∪ SJSeK(testJ¬BKm) (6.14)

While statements are more complex than all the others. Their semantics is ex-
pressed as a least fixpoint whose existence is guaranteed by Thm. 2.1 and Thm. 2.2
(see Section 2.3).

SJwhile (B) SbKM ≜ testJ¬BK(lfp F) (6.15)

where F(M1) ≜M ∪ SJSbK(testJBKM1)

We observe that SJSK is monotonic and continuous, and it is furthermore an
operator over the complete lattice (D,⊆,∪,∩, ∅,S). This implies that we can apply
both Tarski’s fixpoint theorem (Thm. 2.1) or Kleene’s fixpoint theorem (Thm. 2.2)
to observe that SJSK is well-defined. In particular, Kleene’s theorem draws an
insightful parallel with the iterative nature of while statements. In fact, we can
observe that F0(∅) = ∅, and that F1(∅) = M, namely F1(∅) is the set of reachable
states before entering the loop. Then, F2(∅) = M ∪ SJStKtestJBKM, which is the
set of reachable states at the loop head after at most one iteration of the loop. In
general, Fn(∅) corresponds to the set of reachable states at the loop head after at
most n – 1 iterations. Then, the least fixpoint reachable at the loop head is exactly⋃
i∈N F

i(∅), which corresponds to executing the loop an arbitrary number of times.
To conclude, the states that exit the loop are those that do not satisfy the boolean
condition B, namely testJ¬BK(

⋃
i∈N F

i(∅)).

6.2. SEMANTICS 89

Example 6.3 (Fixpoint semantics)
Consider the program in Example 6.1, which computes the factorial of n.
Consider as initial state { n 7→ 3, factorial 7→ 0, i 7→ 0 }, so that { { n 7→
3, factorial 7→ 1, i 7→ 2 } } is the set of reachable states before entering the
while loop. The Kleene’s iterates are given by the following:

• F0(∅) = ∅.

• F1(∅) = { { n 7→ 3, factorial 7→ 1, i 7→ 2 } }.

• F2(∅) = { { n 7→ 3, factorial 7→ 1, i 7→ 2 }, { n 7→ 3, factorial 7→ 2, i 7→
3 } }.

• F3(∅) = { { n 7→ 3, factorial 7→ 1, i 7→ 2 }, { n 7→ 3, factorial 7→ 2, i 7→
3 }, { n 7→ 3, factorial 7→ 6, i 7→ 4 } }.

• ∀i ≥ 4 : Fi(∅) = F3(∅), so that lfpF = { { n 7→ 3, factorial 7→ 1, i 7→
2 }, { n 7→ 3, factorial 7→ 2, i 7→ 3 }, { n 7→ 3, factorial 7→ 6, i 7→ 4 } }.

Then, the negation of the boolean condition i <= n is i > n, so that the
resulting reachable states after the while loop is { { n 7→ 3, factorial 7→
6, i 7→ 4 } }. We observe that, as we expected, the variable factorial stores
the factorial of n.

While sometimes we can reach the least fixpoint of the function F after a finite
number of iterations, in general this is not the case. In fact, as we show in the
following example, we sometimes have to pass to the limit to obtain the least
fixpoint.

Example 6.4 (Infinite Kleene’s iterations)
Consider the following program:

1 n = 0;

2 while (tt) {

3 n = n + 1;

4 }

There are infinitelymany different Kleene iterates of the function F. The least

90 CHAPTER 6. STATIC ANALYSIS BY ABSTRACT INTERPRETATION

fixpoint is given by the following:

lfp F =
⋃
i∈N

Fi(∅) = { { n 7→ i } | i ∈ N }

While the semantics of statements is a function from a set of states to another
set of states, the semantics of a program P := S is simply a set of states: SJPK ∈ D.
We define the set of initial states I ∈ D as the set of all possible programmemories:

I ≜ {m ∈ M } (6.16)

Then, we obtain the program reachability semantics SJPK ∈ D of P := S by applying
the statement semantics to the set of initial states.

SJPK ≜ SJSKI (6.17)

6.2.3. Trace semantics

While the reachability semantics presented in the previous section is well-suited
to concisely represent the set of reachable states, it is not the most informative de-
scription of programs behaviour. In fact, the trace semantics that we describe in this
section is strictly more expressive than the reachability semantics. We introduce
the trace semantics because, as shown in Section 6.3, formal study of program
properties necessitates reasoning based on themost informative semantics. In par-
ticular, the reachability semantics does not capture aspects of programs execution
such as nontermination. When designing analyses, one has to choose the simplest
semantics that can still infer all properties of interest. In the case of the analysis
presented in Chapter 7, the reachability semantics is indeed sufficient. The trace
semantics we present in this section is stateful, namely the state of the program
is described in the elements of the trace, rather than the transitions. Alternative
stateless trace semantics have been proposed [5, Chapter 6].

A trace is a sequence of pairs of program labels and states, namely a sequence
(ℓ1,m1), (ℓ2,m2), A trace is finite if it is an element of T∗ ≜ (L×S)∗ or infinite if it
is an element of T∞ ≜ (L×S)∞. We denote the empty trace as ε ∈ T∗. We define the
set of non-empty finite traces asT+ ≜ T∗\{ε}, and the set of all traces asT∗∞ ≜ T∗∪T∞.

6.2. SEMANTICS 91

Let t = (ℓ0,m0), . . . , (ℓn,mn) ∈ T∗ and t′ = (ℓ′0,m
′
0), (ℓ

′
1,m

′
1), · · · ∈ T∗∞ such that

ℓn = ℓ′0 andmn = m
′
0. Then, the trace junction operator is defined as follows:

t⌢ t′ ≜ (ℓ0,m0), . . . , (ℓn,mn), (ℓ
′
1,m

′
1), . . . (6.18)

Observe that t⌢ t′ is undefined if ℓn ≠ ℓ′0 ormn ≠ m
′
0. The trace junction operator

is defined as t⌢ t′ ≜ t if t ∈ T∞. Furthermore, we denote the length of a trace t as
|t|. Observe that |t| =∞ if t ∈ T∞.

We now define by structural induction the transition relation of statements,
namely a relation that describes the possible transitions from a pair (ℓ,m) to
another induced by a statement S. Note that it is a small-step operational seman-
tics [120].

τJSK ∈ ℘((L× S)× (L× S))

τJℓ1skipℓ2K ≜ { ((ℓ1,m), (ℓ2,m)) | m ∈ M } (6.19)

τJℓ1x = Aℓ2K ≜ { ((ℓ1,m), (ℓ2,m[x← AJAKm])) | m ∈ M,AJAKm ̸= }
(6.20)

τJℓ1S1; ℓ2Sℓ32 K ≜ τJℓ1S1ℓ2K ∪ τJℓ2S2ℓ3K (6.21)

τJℓ1if (B) ℓ2Stℓ3 else ℓ4Seℓ5fiℓ6K ≜ { ((ℓ1,m), (ℓ2,m)) | m ∈ M,BJBKm = tt }∪ (6.22)

{ ((ℓ1,m), (ℓ4,m)) | m ∈ M,BJBKm = ff }∪

τJℓ2Stℓ3K ∪ τJℓ4Seℓ5K∪

{ ((ℓ3,m), (ℓ6,m)) | m ∈ M }∪

{ ((ℓ5,m), (ℓ6,m)) | m ∈ M }

τJℓ1while ℓ2(B) ℓ3Sb
ℓ4odℓ5K ≜ { ((ℓ1,m), (ℓ2,m)) | m ∈ M, }∪ (6.23)

{ ((ℓ2,m), (ℓ3,m)) | m ∈ M,BJBKm = tt }∪

τJℓ3Sb
ℓ4K∪

{ ((ℓ4,m), (ℓ2,m)) | m ∈ M, }∪

{ ((ℓ2,m), (ℓ5,m)) | m ∈ M,BJBKm = ff }

Using the definition of τJSK, it is possible to define themaximal trace semantics,
which collects all the complete execution traces of a programalongwith the infinite
traces. Let P := S.

92 CHAPTER 6. STATIC ANALYSIS BY ABSTRACT INTERPRETATION

S∞JPK ∈ ℘(T∗∞)

S∞JPK ≜ { (ℓ1,m1), . . . , (ℓn,mn) ∈ T∗ | (6.24)

∀i < n : ((ℓi,mi), (ℓi+1,mi+1)) ∈ τJSK

and ∄(ℓ,m) : ((ℓn,mn), (ℓ,m)) ∈ τJSK }

∪ { (ℓ1,m1), · · · ∈ T∞ | ∀i ≥ 1 : ((ℓi,mi), (ℓi+1,mi+1)) ∈ τJSK }

Observe that it is possible to give afixpoint characterizationof themaximal trace
semantics [121]. Furthermore, the reachability semantics described in Section 6.2.3
is an abstraction of themaximal trace semantics, namely the former can be inferred
from the latter by ignoring some information. There are numerous semantics that
can be organized into a hierarchy of successive abstractions [121].

6.3. Program properties

We are interested in classifying programs as “correct” or “incorrect” with respect
to a certain specification, and in order to do this we mathematically formalize
these intuitive concepts. Properties are specified by their extension, that is, the set
of elements that have such property. Therefore, if X is an universe, properties
of X are elements of ℘(X). We first study properties of traces (trace properties), so
that these types of properties are elements of ℘(T∗∞), i.e. sets of traces. Trace
properties are sometimes simply referred as properties, and we describe them in
detail in the following section. As we will discuss, they can be generalized and
extended to hyperproperties [50], that are properties of program semantics.

6.3.1. Trace properties

In this section, we study two classes of trace properties, namely safety and liveness,
and we will see that every trace property can be expressed as the conjunction of a
safety and a liveness property.

Safety properties are the class of trace properties that ensure that certain
undesirable conditions do not occur during the execution of a program, and are
usually described as the class of properties stating that “something bad never

6.3. PROGRAM PROPERTIES 93

happens.” They include extensively studied properties, such as absence of runtime
errors and partial correctness [122] (i.e., all the terminating computations yield
correct results). Informally, a trace property is a safety property such that, when it
does not hold, it admits a finite counter-example prefix trace. We now give the formal
definition of the class of safety properties.

Definition 6.1 (Safety property)
A trace property P ∈ ℘(T∗∞) is a safety property if and only if:

∀T ∈ ℘(T∗∞),T ⊈ P =⇒

∃t ∈ T∗ : ∃t′ ∈ T∗∞ : t⌢ t′ ∈ T : ∀t′′ ∈ T∗ : t⌢ t′′ /∈ P

Example 6.5 (Safety property)
Let S ∈ ℘(L × S) be a property of labels-states pairs. Then, S∞ ∈ T∞ is a
safety property. If S is a set of “good” desirable states, then S∞ is the safety
property expressing that no “bad” state is ever reached.

Liveness properties are the class of trace properties that ensure that a certain
desirable condition is eventually met, and they are usually described as properties
stating that “something good eventually happens.” Informally, a liveness property
is a trace property such that any finite execution may be extended into a correct
one. This implies that liveness properties do not admit finite counterexamples.
The canonical example of liveness property is termination, which states that every
computation eventually terminates. Observe that since liveness properties do not
admit finite counterexamples, it is not possible to use testing to disprove a liveness
property.

Definition 6.2 (Liveness property)
A trace property P ∈ ℘(T∗∞) is a liveness property if and only if:

∀t ∈ T∗ : ∃t′ ∈ T∗∞ : t⌢ t′ ∈ P

94 CHAPTER 6. STATIC ANALYSIS BY ABSTRACT INTERPRETATION

Example 6.6 (Liveness property)
T∗ is a liveness property. More precisely, it describes termination.

Observe that there are other definitions of safety and liveness properties in
terms of topologically closed and dense sets [5, Chapter 14]. As proved by Alpern
and Schneider [122], safety and liveness properties are sufficient to fully describe all
trace properties. In fact, every trace property can be expressed as the intersection
of a safety and a liveness property.

Theorem 6.1 (Trace properties as conjunction of safety and liveness [122])
Let P ∈ ℘(T∗∞) be a trace property. Then, there exist a safety property S and
a liveness property L such that:

P = S ∩ L

Example 6.7 (Total correctness)
Total correctness states that all the computations yield correct results. It is
expressed as the conjunction of partial correctness (i.e., all the terminating
computations yield correct results), and termination (i.e., all the computa-
tions are finite).

6.3.2. Hyperproperties

While trace properties have been extensively studied in the literature, they are
not sufficiently expressive to describe some classes of program behaviours. The
canonical example is noninterference [123, 124, 125], which requires public output
data of a program not to depend on private input data. To express noninterference,
it is necessary to compare different executions of the program, so that trace prop-
erties are not sufficient to express it. To overcome this limitation, the framework of
hyperproperties [50] has been introduced. Hyperproperties, sometimes referred as
program properties or relational properties, are sets of program semantics, and there-
fore elements of ℘(℘(T∗∞)). They increase the expressiveness of trace properties
by being able to relate different program executions. According to our definition
of properties (a property is the set of elements that have the property), it would

6.3. PROGRAM PROPERTIES 95

be more appropriate to refer to hyperproperties as program properties. Never-
theless, the term hyperproperty has been widely used in the literature and it is
well-understood, so that we use it as well in this work. Similarly to trace properties,
hyperproperties can be divided in hypersafety and hyperliveness.

Hypersafety properties extend safety trace properties by allowing the coun-
terexample observation to be a finite set of finite traces, rather than a single finite
trace. Informally, hypersafety properties can be defined as those hyperproperties
such that, if the property does not hold, then it admits a finite set of finite traces as
counterexample. Given T1,T2 ∈ ℘(T∗∞), we say that T2 extends T1 and note T1 ≤ T2
if and only if the following holds:

T1 ≤ T2
△⇐⇒ ∀t ∈ T1 : ∃t′ ∈ T∗∞ : t⌢ t′ ∈ T2 (6.25)

Definition 6.3 (Hypersafety property)
A hyperpropertyP ∈ ℘(℘(T∗∞)) is a hypersafety property if and only if:

∀T1 ∈ ℘(T∗∞) : T1 /∈ P =⇒

∃M ∈ ℘(T∗) :


M is finite ∧

M ≤ T1 ∧

∀T2 ∈ ℘(T∗∞) :M ≤ T2 =⇒ T2 /∈ P

While the definition requires the counterexample to be finite, it can be arbi-
trarily large. For this reason, we introduce k-hypersafety properties, which bound
the maximum size of the counterexample to k traces for k ≥ 1.

Definition 6.4 (k-hypersafety property)
A hyperpropertyP ∈ ℘(℘(T∗∞)) is a k-hypersafety property if and only if:

∀T1 ∈ ℘(T∗∞) : T1 /∈ P =⇒

∃M ∈ ℘(T∗) :


|M| ≤ k ∧

M ≤ T1 ∧

∀T2 ∈ ℘(T∗∞) :M ≤ T2 =⇒ T2 /∈ P

96 CHAPTER 6. STATIC ANALYSIS BY ABSTRACT INTERPRETATION

Remark 6.2 (Safety properties as 1-hypersafety)
All safety properties are 1-hypersafety, because counter-examples consist
of only one finite trace. This implies that hypersafety properties generalize
safety properties.

Noninterference informally requires public output data not to depend on private
input data, and we now formalize this property as a 2-hypersafety property. First,
we need to partition the variables between public variables Vpub and private variables
Vpriv, and V = Vpub ∪ Vpriv. Public variables are those that can be observed by the
users of the system, while private variables are those that hold the values of secret
data which should not be leaked. Form1,m2 ∈ M, we writem1 =pub m2 if and only
if the two memories agree on the values of the public variables:

m1 =pub m2
△⇐⇒ ∀x ∈ Vpub : m1(x) = m2(x) (6.26)

Then, we can finally define noninterference as the set of sets of traces such
that traces that agree on the values of public variables at the beginning, agree on
the values of public variables at the end.

Definition 6.5 (Noninterference)

NI ∈ ℘(℘(T∗))

NI ≜ {T ∈ ℘(T∗) | ∀t = (ℓ1,m1), . . . , (ℓn,mn), t′ = (ℓ′1,m
′
1), . . . , (ℓ

′
n′,m

′
n′) ∈ T :

m1 =pub m′1 =⇒ mn =pub m′n′ }

Noninterference is a 2-hypersafety property, as it is sufficient to observe two
traces that agree on public variables at the beginning, but differ in the value of at
least one public variable at the end to disproveNI. For the rest of this section, if
not otherwise specified, we let Vpub = {xpub} and Vpriv = {xpriv}.

Example 6.8 (Explicit flow)
Consider the following program:

xpub = xpriv

6.3. PROGRAM PROPERTIES 97

The program is interferent, because by modifying the private input of the
program, thepublic output changes. Adependency that is propagated through
assignments is known as an explicit flow [126]. Consider now the following
program:

xpub = xpriv - xpriv

Even if it seems like the program is interferent, due to the public output
variable being assigned to an expression involving private input data, this is
not actually the case. In fact, the final value for xpub is always 0, independently
from the value of xpriv. This implies that xpub does not depend on the private
input, which means that the program is noninterferent. Hence, the notion of
noninterference is not purely syntactic but rather semantic, as it must take
into account the values of variables and expressions.

Example 6.9 (Implicit flow)
Consider the following program:

if (xpriv == 0) { xpub = 1 } else { xpub = 2 }

At the end of the program, value of xpub is 1 or 2 depending on the value of
xpriv. This implies that the program is interferent, even though the variable
xpub is not explicitly assigned to xpriv. Dependencies that arise from the
program control are known as implicit flows [126]. Often implicit flows are
ignored [127], as they are considered less dangerous than explicit flows. Nev-
ertheless, since we rely on a precise semantic definition of noninterference,
in this work we do take them into account.

As we will see in Chapter 7, an important class of hyperproperties is the subset-
closed hyperproperties. Informally, a hyperproperty is subset-closed when each
subset of the set of traces that have the property, also has the property.

Definition 6.6 (Subset-closed hyperproperty)
LetP ∈ ℘(℘(T∗∞)) be a hyperproperty. Then,P is subset-closed if and only if

98 CHAPTER 6. STATIC ANALYSIS BY ABSTRACT INTERPRETATION

the following holds.

∀T ∈ ℘(T∗∞) : T ∈ P =⇒ (∀T′ ∈ ℘(T∗∞) : T′ ⊆ T =⇒ T′ ∈ P)

As it turns out, every hypersafety property is subset-closed.

Theorem 6.2 (Hypersafety properties are subset-closed [50])
LetP ∈ ℘(℘(T∗∞)) be a hypersafety property. Then,P is subset-closed.

A hyperproperty is a hyperliveness property if and only if, for each finite set of
finite traces, it is possible to make the set respect the property by extending it with
another set of traces.

Definition 6.7 (Hyperliveness property)
A hyperpropertyP ∈ ℘(℘(T∗∞)) is a hyperliveness property if and only if:

∀T1 ∈ ℘(T∗) : T1 is finite =⇒ ∃T2 ∈ ℘(T∗∞) : T1 ≤ T2 ∧ T2 ∈ P

Example 6.10 (Hyperliveness property)
We define interference as follows:

I ∈ ℘(℘(T∗))

I ≜ {T ∈ ℘(T∗) | ∃t = (ℓ1,m1), . . . , (ℓn,mn), t′ = (ℓ′1,m
′
1), . . . , (ℓ

′
n′,m

′
n′) ∈ T :

m1 =pub m′1 ∧mn ̸=pub m
′
n′ }

As it turns out, interference is a hyperliveness property. In fact, it is always
possible to extend a finite set of finite traces with two interferent traces to
make it respectI.

In this work, we mainly focus on hypersafety properties. Nevertheless, we use
hyperliveness properties to fully characterize the set of hyperproperties. In fact,
similarly to the case of trace properties (see Thm. 6.1), any hyperproperty can be
represented as the intersection of a hypersafety and a hyperliveness property.

6.4. STATIC ANALYSIS AND ABSTRACT INTERPRETATION 99

Theorem 6.3 (Hyperproperties as conjunctions of hypersafety and hyperlive-
ness [50])
LetP ∈ ℘(℘(T∗∞)) be a hyperproperty. Then, there exist a hypersafety prop-
ertyS and a hyperliveness propertyL such that:

P = S ∩L

6.3.3. Undecidability of semantic program properties

While software engineering techniques extensively studied syntactic program prop-
erties (e.g. number of lines in each function, number of nested loops, etc.), semantic
program properties, that is properties of the semantics of programs, are more chal-
lenging to be verified. Indeed, it is impossible to write a program that accepts as
input another program and verifies its correctness, and this result is known as
Rice’s undecidability theorem.

Theorem 6.4 (Rice’s Undecidability Theorem [22])
All non-trivial semantic properties of programs are undecidable.

Rice’s theorem is a well-known impossibility result that states that if a semantic
property is non-trivial (i.e., that is neither true nor false for every program), then
there is no algorithm that can prove it. The result can be seen as an extension
of Alan Turing’s result on the undecidability of the halting problem [128]. Even if
the result seems limiting, in the following section we show how it is nevertheless
possible, under suitable hypotheses, to still prove some program properties.

6.4. Static analysis and abstract interpretation

Computer scientists in the field of formal methods have developed a rich set of
techniques to elude Rice’s theorem. This can be done by sacrificing either complete-
ness (all true facts are provable), soundness (the conclusions about programs are
always correct under suitable explicitly stated hypotheses), or automation (proofs
are carried out by a computer). The main approaches to formal methods are the
following:

100 CHAPTER 6. STATIC ANALYSIS BY ABSTRACT INTERPRETATION

Deductive methods. Deductive methods produce proofs of correctness, but ulti-
mately require user interaction. This approach makes it possible to prove
strong properties of programs, such as functional correctness with respect
to a specification. Even if proof assistants help the user with hints and strate-
gies to carry out a proof, this process cannot be ultimately fully automatized.
Proof assistants such as COQ [129], LEAN [130], ISABELLE [131], and AGDA [132]
are widely used in the field of deductive verification, and proof-oriented
programming languages such as F∗ [133], DAFNY [134], WHYML [135], and
SPARK [136] are designed to natively support formal software verification.
The FRAMA-C [137] framework builds upon WHY3 [135] to allow deductive
verification of user-annotated C code.

Symbolic execution. Symbolic execution techniques perform an abstract execu-
tion of programs by assuming symbolic variables for the unknown values,
and propagate them during the analysis. The collected constraints are pre-
cise, and can be solved to determine if an arbitrary assertion is violated (e.g.,
absence of runtime errors). Since the number of feasible execution paths
grows exponentially with the size of programs, symbolic execution tech-
niques have sometimes to trade soundness for performance [23]. Examples
of symbolic execution engines are ANGR [138], CRUCIBLE [139], BINSEC [140],
and KLEE [141].

Model checking. Model checking restricts the verification problem to decidable
fragments of languages [24] and produces correctness proofs automatically.
Clarke et al. [25] apply bounded model checking to prove the correctness of
ANSI-C programs. Their approach unwinds loops and function calls up to a
threshold, which implies that behaviours beyond such a threshold are not
considered. Symbolic model checking generalizes the approach to infinite but
regular models [142]. CPACHECKER [143], ULTIMATEAUTOMIZER [144], and
CBMC [145] are examples of model checkers for C.

Static analysis. Static analysis approaches analyze programswithout the interven-
tion of the user, and can automatically prove properties such as absence of
runtime errors. Since the languages are not restricted to decidable fragments,
the approach is necessarily not complete: correct programs can be classified

6.4. STATIC ANALYSIS AND ABSTRACT INTERPRETATION 101

as dangerous, meaning that the analyzer can raise false positives. On the other
hand, if the analyzer determines that a program is correct, then there is a
strong mathematical guarantee about the fact that errors will not occur at
runtime, namely there are no false negatives.

In this work, we rely on static analysis by abstract interpretation [26], which
is a general theory of the approximation of formal program semantics. Abstract
interpreters, i.e. analyzers that rely on abstract interpretation theory, run an abstract
execution on the program and collect an overapproximation of the reachable states.
In a single run, they consider all concrete executions, to which they necessarily add
some spurious, hopefully irrelevant, ones. Since an abstract interpreter considers
all reachable program states, if it finds a program to be error-free, then this proves
that the program is correct. On the other hand, if the spurious executions turn out
to be incorrect, an abstract interpreter can fail to prove that a correct program
is indeed error-free. In this section, we propose a lightweight introduction to the
theory of abstract interpretation. Various books and tutorials are available for an
in-depth description of the topic [5, 146, 147].

The method we describe in what follows is suitable to prove safety properties,
but can be adapted to prove liveness properties [148, 149, 150]. On the other hand,
the verification of hyperproperties poses some challenges, andwediscuss it further
in Chapter 7.

6.4.1. Concrete and abstract elements

We now introduce the concepts of concrete and abstract elements, which are inde-
pendent from program analysis. While in this section we reason on a generic set of
concrete elements, in Section 6.4.3 we instantiate this concept to sets of memories,
which are the concrete elements that we ultimately want to reason about.

The concrete set is a poset (C,≤), and the abstract set is a poset (A,⊑). The
connection between the two sets is given by a concretization function γ : A → C
that assigns meaning in terms of a concrete element to each abstract one.

Example 6.11 (Interval abstraction)
To study the concepts of abstract and concrete elements, we instantiate the
concrete set to (℘(Z),⊆). To abstract sets of integers, we use intervals, which

102 CHAPTER 6. STATIC ANALYSIS BY ABSTRACT INTERPRETATION

⊥i

[0, 0] [1, 1][–1, –1] [2, 2][–2, –2].

[0, 1] [1, 2][–1, 0][–2, –1].

[–1, 1][–2, 0] [0, 2].

[–∞, +∞]

FIGURE 6.2. The interval complete lattice

are elements of the following set:

I ≜ { [l ,u] | l ∈ Z ∪ {–∞},u ∈ Z ∪ {∞}, l ≤ u } ∪ ⊥i (6.27)

The partial order⊑i for intervals is defined as follows:

∀i : ⊥i ⊑i i (6.28)

∀[l 1,u1], [l 2,u2] : [l 1,u1] ⊑i [l 2,u2]
△⇐⇒ l 2 ≤ l 1 ∧ u1 ≤ u2 (6.29)

Then, the concretization function γi : I→ ℘(Z) associates an interval [l ,u] to
the set of numbers that range from l to u:

γi(⊥i) ≜ ∅ (6.30)

γi([l ,u]) ≜ {n ∈ Z | l ≤ n ≤ u } (6.31)

A fundamental notion in abstract interpretation theory is soundness. An abstract
element a is a sound abstraction of a concrete element c when the concretization
of a is greater, with respect to the concrete partial order, than c. Intuitively, this
captures the idea that the abstract element carries at least all the information in
the concrete one (and possibly more), and that the abstract element can be used
to soundly reason about the concrete one.

6.4. STATIC ANALYSIS AND ABSTRACT INTERPRETATION 103

Definition 6.8 (Sound abstraction)
Let c ∈ C and a ∈ A. Then, a is a sound abstraction of c if and only if:

c ≤ γ(a)

Example 6.12 (Sound abstraction)
The interval [0, 3] is a sound abstraction of { 0, 2 }:

{ 0, 2 } ⊆ { 0, 1, 2, 3 } = γi([0, 3])

If an abstract element a is not a sound abstraction of a concrete element c, then
we say that a is an unsound abstraction of c.

Example 6.13 (Unsound abstraction)
The interval [0, 1] is an unsound abstraction of { 0, 2 }:

{ 0, 2 } ⊈ { 0, 1 } = γi([0, 1])

Exactness is a strictly stronger notion than soundness. An abstract element a
is an exact abstraction of a concrete element c in case its concretization is exactly
equal to c.

Definition 6.9 (Exact abstraction)
Let c ∈ C and a ∈ A. Then, a is an exact abstraction of c if and only if:

c = γ(a)

Intuitively, exact abstractions do not lose information about the concrete el-
ement that they represent. It is often impossible in static analysis to have an
abstraction that exactly represents the concrete behaviour of a program, and for
this reason we usually work with sound but inexact abstractions. The notions of
soundness and exactness naturally extend to operators.

104 CHAPTER 6. STATIC ANALYSIS BY ABSTRACT INTERPRETATION

Definition 6.10 (Sound operator abstraction)
Let f : C → C be a concrete operator over C. Then, f ♯ : A → A is a sound
abstraction of f iff:

∀a ∈ A : f (γ(a)) ≤ γ(f ♯(a))

Definition 6.11 (Exact operator abstraction)
Let f : C → C be a concrete operator over C. Then, f ♯ : A → A is an exact
abstraction of f iff:

∀a ∈ A : f (γ(a)) = γ(f ♯(a))

Sound operator abstraction is an important concept in abstract interpretation
theory, as our ultimate goal is to replace operators that manipulate concrete ele-
ments (such as the reachability semantics SJSK) with sound computable operators
that reason on abstract elements.

Convention 6.1 (Abstract elements and operators)
Abstract elements and operators are often suffixed with the symbol ♯ to dis-
tinguish them from the concrete ones.

6.4.2. The best abstraction: Galois connections

While there might be multiple sound abstractions of a concrete element c, it is
interesting to study which one of those is the best one, namely the most precise
sound abstraction of c. Galois connections formalize the correspondence between
concrete elements and the abstract ones in case there is a best abstraction.

Definition 6.12 (Galois connection)
Let (C,≤) (the concrete set) and (A,⊑) (the abstract set) be two posets. Then,
the pair (α,γ) of functions α : C→ A (the upper adjoint) and γ : A→ C (the
lower ajoint) is a Galois connection if and only if:

∀c ∈ C : ∀a ∈ A : α(c) ⊑ a ⇐⇒ c ≤ γ(a)

In this case, we write (C,≤) –––––→←–––––α

γ
(A,⊑).

6.4. STATIC ANALYSIS AND ABSTRACT INTERPRETATION 105

Example 6.14 (Galois connection)
Consider (℘(Z),⊆) and (I,⊑i) as the concrete and the abstract sets. We define
the abstraction function αi : ℘(Z)→ I as follows:

αi(∅) ≜ ⊥i (6.32)

αi(S) ≜ [min S,max S] (6.33)

Then, (αi,γi) form a Galois connection (℘(Z),⊆) ––––––→←––––––αi

γi (I,⊑i). Let S ∈ ℘(Z).
The case S ⊆ γi(⊥i) ⇐⇒ αi(S) ⊑i ⊥i trivially holds, as γi(⊥i) = ∅. Let
[l ,u] ∈ I:

S ⊆ γi([l ,u]) ⇐⇒ ∀n ∈ S : n ∈ γi([l ,u])

⇐⇒ ∀n ∈ S : l ≤ n ≤ u

⇐⇒ l ≤ min S ∧max S ≤ u

⇐⇒ [min S,max S] ⊑i [l ,u]

⇐⇒ αi(S) ⊑i [l ,u]

Galois connections are interesting because the lower adjoint (or abstraction
function) gives the most precise sound abstraction for each concrete element.

Remark 6.3 (Best abstraction)
Let (C,≤) –––––→←–––––α

γ
(A,⊑). Then, ∀c ∈ C it holds that α(c) is the best abstraction,

namely the smallest (with respect to⊑) sound abstraction of c.

The concept of best abstraction also extends to operators.

Remark 6.4 (Best operator abstraction)
Let (C,≤) –––––→←–––––α

γ
(A,⊑), and f : C → C be a concrete operator over C. Then,

the best abstraction (with respect to⊑) of f is given by α ◦ f ◦ γ.

Example 6.15 (Best operator abstraction)
We want to overapproximate the addition between sets of integers defined as

106 CHAPTER 6. STATIC ANALYSIS BY ABSTRACT INTERPRETATION

follows:
S1 + S2 ≜ {n1 + n2 | n1 ∈ S1 ∧ n2 ∈ S2 }

Since there is a Galois connection (℘(Z),⊆) ––––––→←––––––αi

γi (I,⊑i), we can apply Re-
mark 6.4, and obtain that the best abstraction for the addition between sets
of integers is given by the following:

⊥i +i i ≜ ⊥i
i +i ⊥i ≜ ⊥i

[l 1,u2] +i [l 2,u2] ≜ αi(γi([l 1,u2]) + γi([l 2,u2]))

= αi({n1 | l 1 ≤ n1 ≤ u1 } + {n2 | l 2 ≤ n2 ≤ u2 })

= αi({n1 + n2 | l 1 ≤ n1 ≤ u1 ∧ l 2 ≤ n2 ≤ u2 })

= [l 1 + l 2,u1 + u2]

Similarly to addition, we can apply Remark 6.4 and derive the best operator ab-
stractions for subtraction –i, multiplication ×i, and division /i. We also show
how to derive the best operator abstraction for the set union and intersection.

⊥i ∪i i ≜ i

i ∪i ⊥i ≜ i

[l 1,u1] ∪i [l 2,u2] ≜ αi(γi([l 1,u2]) ∪ γi([l 2,u2]))

= αi({n | l 1 ≤ n ≤ u1 ∨ l 2 ≤ n ≤ u2 })

= [min(l 1, l 2),max(u1,u2)]

⊥i ∩i i ≜ ⊥i
i ∩i ⊥i ≜ ⊥i

[l 1,u1] ∩i [l 2,u2] ≜ αi(γi([l 1,u2]) ∩ γi([l 2,u2]))

= αi({n | l 1 ≤ n ≤ u1 ∧ l 2 ≤ n ≤ u2 })

=

[max(l 1, l 2),min(u1,u2)] if max(l 1, l 2) ≤ min(u1,u2)

⊥i otherwise

As it turns out, not every pair of concrete-abstract sets enjoys a Galois connec-
tion, so that there might not always exist an abstraction function α.

6.4. STATIC ANALYSIS AND ABSTRACT INTERPRETATION 107

Example 6.16 (Absence of Galois connection)
Consider as concrete elements intervals over real numbers, and as abstract
elements intervals over rational numbers. Some concrete elements, such
as [0,

√
2], do not have a smallest enclosing rational interval, hence, no α

function can exist. This implies that there is no possible Galois connection
between the two sets.

Observe that even if two sets do not enjoy a Galois connection, it is still possible
to reason in terms of sound abstractions of the concrete elements. Indeed, as
discussed in Section 6.4.3, numerous useful abstractions for program states do not
enjoy a Galois connection with the concrete domain D.

6.4.3. Static analysis and abstract domains

We now instantiate the concepts presented in the previous sections to program
analysis. We first show how to define a sound abstract semantics of the WHILE lan-
guage by using as running example the interval abstract domain [26]. The abstract
semantics is a computable semantics that overapproximates the concrete seman-
tics SJSK. The abstract semantics yields an algorithm to effectively calculate an
overapproximation of the reachable program states, and for this reason the terms
abstract semantics and analysis are often used interchangeably. After introducing
the interval abstract semantics, we formalize the concepts of abstract value domain
and abstract domain, and we present different existing domains.

As running example, we first show how to overapproximate program states
(i.e., sets of memories) by abstracting the values of each individual variable with
an interval. To abstract sets of memories we use the interval abstract domain, which
is defined as follows:

V♯
I ≜ (V→ (I \ {⊥i})) ∪ {⊥e} (6.34)

Each variable is assigned to an interval which overapproximates the set of
possible values that can occur in the concrete semantics. If a variable is assigned to
the empty interval⊥i, all the other variables should be⊥i as well. To avoidmultiple
equivalent representations of the bottom state, we use a single representation for

108 CHAPTER 6. STATIC ANALYSIS BY ABSTRACT INTERPRETATION

bottom, namely⊥e. The domain is ordered by the following partial order:

M♯
1 ⊑

♯

V♯
I

M♯
2
△⇐⇒ (M♯

1 = ⊥e) ∨ (M
♯
1,M

♯
2 ̸= ⊥e ∧ ∀x ∈ V :M♯

1(x) ⊑i M
♯
2(x)) (6.35)

The concretization function is given by the following:

γ
V♯

I
: V♯

I → D

γ
V♯

I
(M♯) ≜

∅ ifM♯ = ⊥e
{m ∈ M | ∀x ∈ V : m(x) ∈ γi(M♯(x)) } otherwise

(6.36)

Example 6.17 (Concretization of interval abstraction)
Consider the abstract element { x 7→ [–1, 1], y 7→ [0, 1] }. Its concretization
corresponds to the following set of states:

{ { x 7→ –1, y 7→ 0 }, { x 7→ 0, y 7→ 0 }, { x 7→ 1, y 7→ 0 },

{ x 7→ –1, y 7→ 1 }, { x 7→ 0, y 7→ 1 }, { x 7→ 1, y 7→ 1 } }

Remark 6.5 (Effective representation)
Observe that while D is not machine-representable (its elements can be infi-
nite sets of memories), V♯

I admits an effective representation. This is because
the set of variables is finite, and to each variable we associate an interval that
consists of two finitely representable bounds.

We define an abstraction function for the interval abstract domain which lever-
ages the abstraction function for intervals:

α
V♯

I
: D→ V♯

I

α
V♯

I
(M) ≜

⊥e ifM = ∅

λx ∈ V.αi({m(x) | m ∈M }) otherwise
(6.37)

As it turns out, there is a Galois connection (D,⊆) ––––––––→←––––––––
α

V♯I

γ
V♯I (V♯

I,⊑
♯

V♯
I

). By applying

6.4. STATIC ANALYSIS AND ABSTRACT INTERPRETATION 109

1 2 3 4 5

1

2

3

4

5

x

y

FIGURE 6.3. Interval abstraction of the concrete state { { x 7→ 1, y 7→ 1 }, { x 7→ 4, y 7→
4 } }

the definition of α
V♯

I
, we observe that the abstraction of the set of initial states I

corresponds to the following:

α
V♯

I
(I) = λx ∈ V.[–∞, +∞] (6.38)

Remark 6.6 (Intervals as boxes)
Figure 6.3 shows a graphical representation of the interval abstraction for
the concrete state { { x 7→ 1, y 7→ 1 }, { x 7→ 4, y 7→ 4 } }. The interval abstract do-
main overapproximates a set of points with the smallest enclosing rectangle
containing them.

Observe that since each variable is abstracted individually, the interval domain
is not expressive enough to capture the relations between variables.

Example 6.18 (Loss of information in the interval domain)
Consider the concrete state { { x 7→ 1, y 7→ 1 }, { x 7→ 4, y 7→ 4 } }. The best
interval abstraction (given by α

V♯
I
) is { x 7→ [1, 4], y 7→ [1, 4] }, which loses the

relational information x = y.

We also define join and meet operators to merge and intersect two abstract

110 CHAPTER 6. STATIC ANALYSIS BY ABSTRACT INTERPRETATION

maps which leverage the join and meet operators over intervals (see Example 6.15).

∪♯
V♯

I

: V♯
I × V♯

I → V♯
I

M♯
1 ∪

♯

V♯
I

M♯
2 ≜


M♯
2 ifM♯

1 = ⊥e
M♯
1 ifM♯

2 = ⊥e
λx ∈ V.M♯

1(x) ∪iM
♯
2(x) otherwise

(6.39)

∩♯
V♯

I

: V♯
I × V♯

I → V♯
I

M♯
1 ∩

♯

V♯
I

M♯
2 ≜


⊥e ifM♯

1 = ⊥e orM
♯
2 = ⊥e

⊥e if ∃x :M♯
1(x) ∩iM

♯
2(x) = ⊥i

λx ∈ V.M♯
1(x) ∩iM

♯
2(x) otherwise

(6.40)

Abstract arithmetic expression evaluation

Now that we have described the abstract domain we use for overapproximating
sets of memories, we define a sound abstraction for the arithmetic evaluation
of expressions. The abstract arithmetic evaluation of expressions, denoted as
A
♯

V♯
I

JAK : V♯
I → I, is sound with respect to the following criterion.

Theorem 6.5 (Soundness of abstract interval arithmetic expression evalua-
tion)

∀M♯ ∈ V♯
I : ∀m ∈ γ

V♯
I
(M♯) : AJAKm ∈ γi(A

♯

V♯
I

JAKM♯)

The theorem states that, for each concrete memory overapproximated by an
abstract memory, the result of the evaluation in the concrete is overapproximated
by the result of the abstract evaluation.We canfinally define the abstract evaluation
of expressions for the interval domain by relying on the operators +i, –i,×i, /i (see
Example 6.15).

6.4. STATIC ANALYSIS AND ABSTRACT INTERPRETATION 111

A
♯

V♯
I

JnKM♯ ≜ [n, n] (6.41)

A
♯

V♯
I

JxKM♯ ≜M♯(x) (6.42)

A
♯

V♯
I

JA1 ⋄ A2KM♯ ≜ A
♯

V♯
I

JA1KM♯ ⋄i A
♯

V♯
I

JA2KM♯ (6.43)

Example 6.19 (Abstract arithmetic evaluation)

A
♯

V♯
I

Jx + 1K{ x 7→ [0, 10] } = [0, 10] +i [1, 1] = [1, 11]

Abstract test evaluation

The concrete semantics relies on tests to filter the states that respect a boolean con-
dition. To overapproximate tests, a practical solution is to define ad-hoc functions
for simple and common cases, and revert to a fallback sound implementation for
more complex conditions. The abstract test operator test♯

V♯
I

JBK : V♯
I → V♯

I is sound

with respect to the following:

Theorem 6.6 (Soundness of test♯
V♯

I

JBK)

∀M♯ ∈ V♯
I : testJBK(γV♯

I
(M♯)) ⊆ γ

V♯
I
(test♯

V♯
I

JBKM♯)

Since the operator testJBK filters but does not add or modify the input states,
test♯

V♯
I

JBKM♯ ≜ M♯ is a sound implementation for test♯
V♯

I

JBK. Nevertheless, we de-

fine ad-hoc functions for some useful and common cases to improve the precision
of the operator. LetM♯ ∈ V♯

I such thatM
♯(x) = [l 1,u1] andM♯(y) = [l 2,u2].

test♯
V♯

I

Jx <= nKM♯ ≜

M♯[x← [l 1,min(u1, n)]] if l 1 ≤ n

⊥e otherwise
(6.44)

112 CHAPTER 6. STATIC ANALYSIS BY ABSTRACT INTERPRETATION

test♯
V♯

I

Jx <= yKM♯ ≜

M♯[x← [l 1,min(u1,u2)]][y← [max(l 1, l 2),u2]] if l 1 ≤ u2

⊥e otherwise

(6.45)

More precise versions of the abstract test operator require bottom-up and top-
down traversals of the abstract syntax tree of the boolean expression B, called the
HC4 algorithm in the constraint solving community [151]. In the context of abstract
interpretation, the description of these traversals can be found in [146, Section
4.6].

Abstract semantics of statements

By relying on the arithmetic and test abstract evaluation, we can finally define the
abstract interval semantics of statements. The abstract semantics S♯

V♯
I

JSK : V♯
I → V♯

I

overapproximates the set of reachable states after the execution of S, and it is
sound with respect to the following.

Theorem 6.7 (Soundness of the interval abstract semantics)

∀M♯ ∈ V♯
I : SJSK(γV♯

I
(M♯)) ⊆ γ

V♯
I
(S♯

V♯
I

JSKM♯)

For each statement, the abstract evaluation starting from bottom evaluates to
bottom:

S
♯

V♯
I

JSK⊥e ≜ ⊥e (6.46)

For skip, assignments and composition, the abstract semantics is defined as
follows:

S
♯

V♯
I

JskipKM♯ ≜M♯ (6.47)

S
♯

V♯
I

Jx = AKM♯ ≜M♯[x← A
♯

V♯
I

JAKM♯] (6.48)

S
♯

V♯
I

JS1; S2KM♯ ≜ S
♯

V♯
I

JS2K(S
♯

V♯
I

JS1KM♯) (6.49)

6.4. STATIC ANALYSIS AND ABSTRACT INTERPRETATION 113

For if statements, we first filter the states that enter each branch with the
abstract test evaluation, and then we join the two resulting abstract states with the
abstract join operator.

S
♯

V♯
I

Jif (B) St else SeKM♯ ≜ S
♯

V♯
I

JStK(test
♯

V♯
I

JBKM♯) ∪♯
V♯

I

S
♯

V♯
I

JSeK(test♯
V♯

I

J¬BKM♯)

(6.50)

While statements are the most interesting constructs, as a trivial definition for
the abstract semantics might not be computable. This is due to the fact that some
programs might not terminate, and simply accumulating an overapproximation of
the reachable states at each iteration is not sufficient to guarantee the convergence
of the analysis in finite time. To avoid nontermination, we introduce the widening
operator which is an overapproximating operator that computes upper bounds and
guarantees termination. We first give a formal definition of widening operators.

Definition 6.13 (Widening operator)
A binary operator ∇ : D♯ × D♯ → D♯ is a widening operator in an abstract
domain (D♯,⊑♯) if:

1. It computes upper bounds: ∀x♯1, x
♯
2 ∈ D♯ : x♯1 ⊑

♯ x♯1∇x
♯
2 ∧ x

♯
2 ⊑

♯ x♯1∇x
♯
2

2. It enforces termination: for any infinite sequence x♯0, x
♯
1, x

♯
2, . . . inD♯, the

sequence y♯0, y
♯
1, y

♯
2, . . . computed as y

♯
0 ≜ x♯0, y

♯
i+1 ≜ y♯i∇x

♯
i+1 stabilizes

after a finite time: ∃k ≥ 0 : y♯k+1 = y♯k.

First, we define the widening operator∇i : I× I→ I for intervals. The funda-
mental idea to enforce termination is to push unstable upper bounds to positive
infinity and unstable lower bounds to negative infinity.

⊥i∇ii ≜ i (6.51)

i∇i⊥i ≜ i (6.52)

[l 1,u1]∇i[l 2,u2] ≜

l 1 if l 1 ≤ l 2

–∞ otherwise
,

u1 if u1 ≥ u2

∞ otherwise

 (6.53)

We can then lift the widening operator on intervals to the widening operator

114 CHAPTER 6. STATIC ANALYSIS BY ABSTRACT INTERPRETATION

∇
V♯

I
: V♯

I × V♯
I → V♯

I by applying∇i point-wise:

⊥e∇V♯
I
M♯ ≜M♯ (6.54)

M♯∇
V♯

I
⊥e ≜M♯ (6.55)

M♯
1∇V♯

I
M♯
2 ≜ λx ∈ V.M♯

1(x)∇iM
♯
2(x) (6.56)

By relying on the widening operator, we can give a definition of the abstract
semantics for while statements that is guaranteed to converge after a finite number
of iterations.

S
♯

V♯
I

Jwhile (B) SbKM
♯ ≜ test♯

V♯
I

J¬BK(lim F♯) (6.57)

where F♯(M♯
1) ≜M♯

1∇V♯
I
(M♯ ∪♯

V♯
I

S
♯

V♯
I

JSbK(test
♯

V♯
I

JBKM♯
1))

Example 6.20 (Interval analysis with widening)
Consider the following program:

1 i = 0;

2 while (i < 10) {

3 i = i + 1;

4 }

The abstract state reached at the loop head before the first iteration is { i 7→
[0, 0] }. After one iteration, the variable i is incremented, so that the post
state after the first iteration is { i 7→ [1, 1] }. This is merged with the first state
using the ∪♯

V♯
I

operator, obtaining { i 7→ [0, 1] }. We then apply the widening

operator:

{ i 7→ [0, 0] }∇
V♯

I
{ i 7→ [0, 1] } = { i 7→ [0, +∞] }

Since the upper bound for i is unstable, it is widened to +∞. We now reached
the limit of the iterations, as by evaluating the body of the while statement
again from the state { i 7→ [0, +∞] }, we obtain the same result. We can then
apply the filter test♯

V♯
I

J¬(i < 10)K and observe that the final abstract state is

6.4. STATIC ANALYSIS AND ABSTRACT INTERPRETATION 115

{ i 7→ [10, +∞] }. Observe that this is not the most precise invariant that we
can infer for the variable i, which is i = 10. Advanced iteration techniques
such as decreasing iterations, can be implemented to improve the precision of
the analysis and infer this information [146, Section 4.7].

We defined a sound, computable abstract interval semantics for theWHILE lan-
guage. Many of the definitions we presented rely on underlying interval operations,
and as it turns out they can be used with other domains that overapproximate sets
of integers. In the following sections, we give a signature of the concepts of abstract
value domain and relational abstract domain. As we will observe, different domains
offer different tradeoffs between precision and performance.

Non-relational abstract domains

Abstract value domains overapproximate the values of each variable individually,
losing the relational information. This class of domains is widely used in real-
world scenarios because they are typically computationally efficient. The interval
abstract domain presented in the previous section belongs to this category.

Definition 6.14 (Abstract value domain)
A poset (E,⊑e) is an abstract value domain when it exposes:

• A monotonic concretization function γe : E→ ℘(Z)

• A top element⊤e

• A bottom element⊥e

• Sound abstraction of constants, written ne for n ∈ Z

• Sound abstractions of the arithmetic operators +e, –e,×e, /e

• Sound abstractions of set union and intersection ∪e,∩e

• A widening operator∇e

• Optionally, a Galois Connection E ––––––→←––––––αe

γe
℘(Z)

116 CHAPTER 6. STATIC ANALYSIS BY ABSTRACT INTERPRETATION

Furthermore, the elements of the domain must be finitely representable, and
the abstractions of constants, arithmetic operators, and set union and inter-
section must be computable.

By using the abstractions of a value domain E in the definitions presented
in the previous section, it is possible to automatically lift the arithmetic abstract
evaluation and the abstract semantics toE.Wedenote the resulting abstract domain
as V♯

E. If the abstract value domain enjoys a Galois Connection E ––––––→←––––––αe

γe
℘(Z), then

the connection is lifted to V♯
E ––––––––→←––––––––

α
V♯E

γ
V♯E

D. There exists a large library of abstract value

domains, and here we report some of them:

Signs [26]. The sign domain infers constraints about the sign of each individual
variable. It is computationally inexpensive, as each variable is simply associ-
ated to its sign (positive, negative, zero, or any). This domain is not considered
useful in real-world scenarios, as it fails to provide sufficiently precise in-
formation. Nevertheless, the sign domain is often used as an introductory
example of an abstract domain for teaching purposes.

Powerset [146]. The powerset domain associates to each variable a finite set of
possible values, namely x ∈ {n1,n2, . . . ,nk} with |{n1,n2, . . . ,nk}| < ∞. The
domain is precise, but if the maximum size of the powerset is set too large, it
can quickly become computationally expensive.

Excluded powerset [152]. An interesting variant of the regular powerset is the
excluded powerset, capable of representing not only the elements that might
occur but also the ones that definitely cannot occur. The constraints have type
x ∈ {n1,n2, . . . ,nk} or x /∈ {n1,n2, . . .nk} with k < ∞. This domain proved
itself useful in software verification competitions to improve the precision of
the C analysis [152]. The reason is that often C functions return integer codes
such that any non-zero number represents an error. It is therefore important
to be able to precisely represent possibly infinite non-convex sets.

Intervals [26]. The interval domain, studied in the previous section, infers con-
straints of type x ∈ [l ,u]. The domain is widely used in practice, as it offers
good precision with a low performance cost.

6.4. STATIC ANALYSIS AND ABSTRACT INTERPRETATION 117

Disjunctive intervals domain [153]. The disjunctive intervals domain generalizes
the interval domain by assigning each variable to a finite disjunction of
intervals, namely x ∈ ∪ni=1[l i,ui]. For this reason, this domain also subsumes
both the powerset and the excluded powerset domains.

Congruences [154, 155]. The congruence domain represents constraints of type
x ≡ nmodm. The domain is useful for variables used as array indices, which
are often congruent to the size of the array elements. Another common use
is verifying that variables used as pointer offsets are correctly aligned.

Relational abstract domains

While value domains abstract each variable individually, it is possible to enhance
the precision of the analysis by designing domains that do not lose relational
information. First, we give the most general signature of an abstract domain.

Definition 6.15 (Abstract domain)
A poset (D♯,⊑♯) is an abstract domain when it exposes:

• A monotonic concretization function γ : D♯ → D

• A top element⊤♯ that represents S

• A bottom element⊥♯ that represents ∅

• Sound abstractions of arithmetic binary operations in conditionals
test♯JA1 ⋄ A2K (for ⋄ ∈ { <, <=, >, >=, ==, != })

• Sound abstraction of assignments S♯Jx = AK

• Sound abstractions of set union and intersection ∪♯,∩♯

• A widening operator∇

• Optionally, a Galois Connection D –––––→←–––––α

γ
D♯

Furthermore, the elements of the domain must be finitely representable, and
the abstractions of tests, assignments, and set union and intersection must
be computable.

118 CHAPTER 6. STATIC ANALYSIS BY ABSTRACT INTERPRETATION

If D♯ is an abstract domain, then the following defines a sound, computable
abstract semantics for the WHILE language:

test♯JttKM♯ ≜M♯ (6.58)

test♯JffKM♯ ≜ ⊥♯ (6.59)

test♯JB1 && B2KM♯ ≜ test♯JB1KM♯ ∩♯ test♯JB2KM♯ (6.60)

test♯JB1 || B2KM♯ ≜ test♯JB1KM♯ ∪♯ test♯JB2KM♯ (6.61)

S♯JskipKM♯ ≜M♯ (6.62)

S♯JS1; S2KM♯ ≜ S♯JS2K(S♯JS1KM♯) (6.63)

S♯Jif (B) St else SeKM♯ ≜ S♯JStK(test♯JBKM♯) ∪♯ S♯JSeK(test♯J¬BKM♯) (6.64)

S♯Jwhile (B) SbKM
♯ ≜ test♯J¬BK(lim F♯) (6.65)

where F♯(M♯
1) ≜M♯

1∇(M
♯ ∪♯ S♯JSbK(test

♯JBKM♯
1))

Remark 6.7 (Negation in conditionals)
Observe that we do not require abstract domains to provide test♯J¬BK nor do
we define it in the abstract semantics. This is because it is always possible
to syntactically remove all negations in conditional expressions by using
DeMogan’s laws. To simplify, we assume that all negations have been syntac-
tically removed.

Remark 6.8 (Abstract value domains and abstract domains)
For any abstract value domain E, V♯

E is an abstract domain.

Now that we formally defined what an abstract domain is, we present some
relational domains. Compared to value domains, they have the ability to infer
relationships between variables.

Linear Equalities [156]. Also known asKarr’s domain, the linear equalities domain
is able to infer affine relationships among variables. The invariants have the
form

∧m
j=1

∑|V|
i=1(kij · xi) = nj.

Polyhedra [157]. The polyhedra abstract domain infers linear inequalities among
variables. It is used when superior precision is required, as the domain yields

6.4. STATIC ANALYSIS AND ABSTRACT INTERPRETATION 119

TABLE 6.1. List of some existing numeric abstract domains

Domain Type Constraints
Signs [26] Value domain x ∈ ±
Powerset [146] Value domain x ∈ {n1,n2, . . . ,nk}
Excluded powerset [152] Value domain x ∈ {n1,n2, . . . ,nk} ∨ x /∈ {n1,n2, . . . ,nk}
Intervals [26] Value domain x ∈ [l ,u]
Disjunctive intervals [153] Value domain x ∈ ∪ni=1[l i,ui]
Congruences [154, 155] Value domain x ≡ nmodm
Linear equalities [156] Relational domain

∑|V|
i=1(ki · xi) = n

Polyhedra [157] Relational domain
∑|V|

i=1(ki · xi) ≤ n
Octagons [158] Relational domain ±x± y ≤ n

precise numeric invariants. Nevertheless, the domain is computationally
expensive, and the analysis may be time-consuming.

Octagons [158]. The octagon abstract domain strikes a balance between intervals
and polyhedra, and it can infer relational information of the form±x±y ≤ n.
While it is more precise than intervals, it is computationally more efficient
than polyhedra.

Remark 6.9 (Coefficients in relational domains)
Note that for relational domains, we generally have to assume that the coef-
ficients are rationals, even if we intend to represent sets of integer-valued
environments. The reason is that using integers as coefficients would lead to
unsound algorithms [146, Chapter 5].

Example 6.21 (Relational analysis)
Consider the following program:

y = x; z = x-y

If we run an interval analysis on the program and we consider as initial
value for x the interval [0, 10], then at the end we find that the value of z is
[–10, 10]. This is because the interval abstract domain is not precise enough to

120 CHAPTER 6. STATIC ANALYSIS BY ABSTRACT INTERPRETATION

represent the constraint x = y. By using any of the relational abstract domains
presented in this section, it is possible to infer that at the end of the program
z is 0.

Remark 6.10 (Non-numeric abstract domains)
We focused our attention on numeric domains, namely abstract domains that
overapproximate the values of numeric variables. There exists a rich library
of domains that are not numeric and abstract other aspects of programs
such as memory blocks [159, 160], dynamic memory allocation [161, 162],
arrays [163, 164, 165, 166], dynamic types [162, 167, 168], class invariants [169],
lists [170, 171, 172], trees [170, 172, 173], and string contents [174, 175, 176, 177,
178, 179, 180, 181].

Combining domains: reduced products

Different domains can represent complementary information about a variable. For
instance, the congruence domain can infer that a variable is odd, while the interval
domain gives an upper and lower bound for the values of the variable. Combining
the two can result in a strictly more precise analysis. Consider, for instance, the
following program (taken from [146]):

1 x = 1

2 while (x <= 10) {

3 x = x + 2

4 }

By applying the decreasing iterations technique described in [146, Section 4.7],
the interval domain can infer that x ∈ [11, 12] after exiting the loop, while the
congruence domain infers that x is odd. If we combine this information, we can
observe that x is exactly 11, which would not be possible by using either of the
domains alone.

A reduced product is a domain that is defined as a pair of underlying abstract
domains equipped with a reduction operator to improve the precision of the two.
The concretization function of the product is the intersection of the concretization
of the individual domains.

6.4. STATIC ANALYSIS AND ABSTRACT INTERPRETATION 121

Definition 6.16 (Reduced product)
Let D♯

1,D
♯
2 be two abstract domains, and let ρ : D♯

1×2 → D♯
1×2 be a given reduc-

tion operator that refines D♯
1 and D♯

2. The reduced product D♯
1×2 is an abstract

domain composed of the following:

• D♯
1×2 ≜ D♯

1 × D♯
2

• Partial order (M♯
1,M

♯
2) ⊑

♯
1×2 (N

♯
1,N

♯
2)

△⇐⇒ M♯
1 ⊑

♯
1 N

♯
1 ∧M

♯
2 ⊑

♯
2 N

♯
2

• Monotonic concretization function γ1×2(M
♯
1,M

♯
2) ≜ γ1(M

♯
1) ∩ γ2(M

♯
2)

• Top element⊤♯
1×2 ≜ (⊤♯

1,⊤
♯
2)

• Bottom element⊥♯
1×2 ≜ (⊥♯

1,⊥
♯
2)

• Sound operator for tests:

test♯1×2JBK(M
♯
1,M

♯
2) ≜ ρ(test♯1JBKM

♯
1, test

♯
2JBKM

♯
2)

• Sound operator for abstract execution:

S
♯
1×2JSK(M

♯
1,M

♯
2) ≜ ρ(S♯1JSKM

♯
1, S

♯
2JSKM

♯
2)

• Sound operators for set union and intersection:

(M♯
1,M

♯
2) ∪

♯ (N♯
1,N

♯
2) ≜ ρ(M♯

1 ∪
♯
1 N

♯
1,M

♯
2 ∪

♯
2 N

♯
2)

(M♯
1,M

♯
2) ∩

♯ (N♯
1,N

♯
2) ≜ ρ(M♯

1 ∩
♯
1 N

♯
1,M

♯
2 ∩

♯
2 N

♯
2)

• Widening operator (M♯
1,M

♯
2)∇1×2(N

♯
1,N

♯
2) ≜ (M♯

1∇1N
♯
1,M

♯
2∇2N

♯
2)

• Abstraction function α1×2(M
♯
1,M

♯
2) ≜ (α1(M

♯
1),α2(M

♯
2)) if α1 and α2 exist

The reduction operator ρmust respect the following condition:

(N♯
1,N

♯
2) = ρ(M♯

1,M
♯
2) =⇒ γ1×2(N

♯
1,N

♯
2) = γ1×2(M

♯
1,M

♯
2) ∧

γ1(N
♯
1) ⊆ γ1(M

♯
1) ∧

γ2(N
♯
2) ⊆ γ2(M

♯
2)

122 CHAPTER 6. STATIC ANALYSIS BY ABSTRACT INTERPRETATION

The first condition states the soundness, while the two inclusions state that
each element is strengthened in its respective domain. As an additional con-
dition, the reduction operator must be computable. If D♯

1 and D♯
2 are abstract

value domains, the reduction can be defined directly on the abstract values
of each variable.

Remark 6.11 (Optimal reduction)
In case the two domains in a reduced product enjoy a Galois connection, the
optimal reduction corresponds to the following:

ρ(M♯
1,M

♯
2) ≜ (α1(γ1×2(M

♯
1,M

♯
2)),α2(γ1×2(M

♯
1,M

♯
2)))

This reduction is optimal, namely it is the most precise sound reduction
operator for the two domains.

Remark 6.12 (Widening in reduced product domains)
Observe that in Def. 6.16 we apply the reduction operator ρ after joins and
intersections, but not after the widening operator. The reason is that if we
apply ρ after the widening, termination is no longer guaranteed [146, Section
6.2]. For instance, the widening operator for intervals enforces convergence
by setting interval bounds to infinity. If those bounds are then refined back
to finite numbers by the reduction, the analysis might not terminate.

Example 6.22 (Interval-congruence reduced product)
Let C be the congruence value domain described in the previous section. We
define a reduction ρI×C : I× C→ I× C between intervals and congruences.
The reduction operates directly on the abstract values:

ρI×C([l ,u], aZ + b) ≜


(⊥i,⊥c) if l ′ > u′

([l ′, l ′], 0Z + l ′) if l ′ = u′

([l ′,u′], aZ + b) if l ′ < u′

where l ′ = min{n | n ≥ l ∧ n ≡ bmod a }

6.4. STATIC ANALYSIS AND ABSTRACT INTERPRETATION 123

u′ = max{n | n ≤ u ∧ n ≡ bmod a }

Remark 6.13 (Direct product domain)
The reduction operator can be trivially implemented as follows:

ρ(M♯
1,M

♯
2) ≜ (M♯

1,M
♯
2)

This reduction does not enhance the precision of the analysis, as it does not
leverage the information available in the two underlying domains. The do-
main where the reduction is trivial is known as the direct product domain [146,
Section 6.2].

6.4.4. Static analysis tools based on abstract interpretation

During the years, many static analyzers based on abstract interpretation theory
have been developed.

ASTRÉE [27, 182, 183, 184]. The ASTRÉE analyzer is a commercial static analysis
tool specifically designed to verify the correctness of large embedded safety-
critical software written in C. The analyzer was able to prove the absence of
runtime errors in the flight control codes of the Airbus fly-by-wire systems.

CLOUSOT [185]. CLOUSOT can verify contract specifications of individual func-
tions. The tool checks every method in isolation using an assume-guarantee
reasoning: first, it assumes the precondition, and then it asserts the postcon-
dition. At its core, CLOUSOT is an abstract interpreter that infers program
facts. In addition to verifying contracts, CLOUSOT can also report regular
runtime errors, such as null-pointer dereferences.

FRAMA-C [137, 186, 187] FRAMA-C is a platform for static analysis, dynamic anal-
ysis, and deductive verification. It supports a plugin system, which makes
it possible to extend the existing analyses and add new ones. The EVA plu-
gin [186, 187] infers numeric invariants for C code by relying on abstract
interpretation theory.

124 CHAPTER 6. STATIC ANALYSIS BY ABSTRACT INTERPRETATION

IKOS [188]. NASA developed the IKOS open-source static analysis platform. The
tool has a frontend for C and C++ programs based on LLVM [189], and it
is optimized for the verification of real-time software. The SEAHORN auto-
mated verifier [190] relies on IKOS to infer numeric invariants for LLVM-based
languages.

INFER [191, 192]. Meta developed and maintains INFER, which is a multi-language
static analyzer for C, C++, Java, and Objective-C. The tool is used to analyze
large real-world code bases during the continuous integration process. IN-
FER’s main objective is to be fast and report a low number of false positives,
so that soundness is sometimes traded for performance.

JULIA [193, 194]. JULIA is a static analyzer based on abstract interpretation for Java.
It can analyze Java bytecode, which makes it possible to easily support other
JVM-based languages such as Scala. Furthermore, Julia supports a security
analysis to detect injection attacks [194].

LISA [195, 196, 197]. LISA is an analyzer specifically designed for teaching. While
many tools based on abstract interpretation often demand a high level of
expertise before being proficient, LISA has been conceived to be simple to
understand, use, and extend.

MOPSA [48, 198, 199, 167]. In this work, we implement our algorithms within the
MOPSA framework, a sound static analysis platform to develop abstract
interpretation-based analyses. MOPSA has a modular architecture, which
makes it easy to extend and combine existing abstract domains. The tool
supports both C [198] and Python [167], and can combine the two in a multi-
language analysis [199]. MOPSA offers a large set of ready-to-use abstract
numeric domains provided by the APRON [200] library.

PYSA [201]. PYSA is a static analyzer based on abstract interpretation for taint
analysis [202] of Python programs. It is used at Meta to analyze real-world
large Python code bases and prove the absence of injection attacks.

TAJS [168, 203, 204, 205, 206]. TAJS is a sound static analyzer for Javascript pro-
grams that reports type-related errors. It relies on a simplified underlying

6.5. CONCLUSION 125

language to which Javascript code is compiled to, and this makes it easier to
support a large set of high-level complex constructs.

VERASCO [207, 208, 209, 210]. The VERASCO abstract interpreter can analyze C
programs, and its soundness is formally proved with the COQ [129] proof
assistant. VERASCO is integrated within the formally-verified COMPCERT [211]
C compiler so that not only the soundness of the analysis results is math-
ematically guaranteed, but also these guarantees transfer to the compiled
program.

6.5. Conclusion

In this section, we summarized the principles of static analysis by abstract inter-
pretation. First, we specified the concrete semantics of the WHILE language, i.e. a
precise mathematical formulation of programs behaviour. Then, we defined differ-
ent classes of program properties, which are represented as sets of elements that
have the property. Finally, we described a sound, computable abstract semantics
for programs that is parametric on the underlying abstract domain used to infer
numeric invariants.

126 CHAPTER 6. STATIC ANALYSIS BY ABSTRACT INTERPRETATION

Chapter 7

Sound Abstract Safety
Nonexploitability Analysis

Runtime errors that can be triggered by an attacker are sensibly more dangerous
than others, as they not only result in program failure, but can also be exploited
and lead to security breaches such as Denial-of-Service attacks or remote code
execution. In this chapter, we introduce a novel analysis based on abstract inter-
pretation in order to prove that a program is safety-nonexploitable, namely it does
not present runtime errors that can be triggered by an attacker.

In Section 7.1 and Section 7.2 we introduce the problem we tackle and we mo-
tivate the need for our work, while in Section 7.3 we introduce the basic ideas
of a well-known technique called taint analysis that we use later in this chapter.
Section 7.4 and Section 7.5 present respectively the syntax and the semantics of the
language that we consider, which supports features such as nondeterminism and
runtime user input reads. In Section 7.6 we formally define safety-nonexploitability as
a hyperproperty, and in Section 7.7we introduce a concrete semantics that precisely
captures the set of user-controlled variables, which is useful to prove that a pro-
gram is safety-nonexploitable. Section 7.8 finally presents the computable abstract
semantics, i.e. the analysis, which can prove a program to be safety-nonexploitable.
The proofs of the theoretical results are reported in Appendix A. This chapter and
the following are based on a work published at VMCAI 2024 [53].

127

128 CHAPTER 7. SOUND ABSTRACT SAFETY NONEXPLOITABILITY ANALYSIS

7.1. Introduction

Program failures that can be triggered by a malicious user are sensibly more dan-
gerous than others, as they can lead to security breaches. Attackers can exploit
well-known runtime errors, such as index out-of-bounds and double free, to per-
form dangerous attacks including Denial-of-Service (DoS) attacks or remote code
execution. Numerous companies identified such exploitable vulnerabilities in
their systems, including Meta [45], Apple [46], and Google [47]. Microsoft recently
published a report showing that consistently over 20 years, around 70% of the
security breaches that have been reported in their systems are due to exploitable
memory corruption [29]. As it is difficult to identify program errors with manual
inspection, static analysis is an invaluable tool to automatically detect them.

While sound static analyzers can report all possible runtime errors, including
the exploitable ones, they often raise a high number of false positives. If the noise
generated by the false alarms is elevated, the report of the analyzer quickly be-
comes unintelligible, and it is then difficult to identify the true exploitable runtime
errors. In order to filter out the warnings that do not concern security issues, it is
necessary to combine a traditional analysis for safety properties with a security
analysis for hyperproperties [50].

We bridge the gap between classic safety and security. We first formalize safety-
nonexploitability as a 2-hypersafety property, and then we propose an alternative
characterization based on semantically tainted (i.e. user-controlled) variables. We
leverage such a characterization to put forward a sound analysis by abstract in-
terpretation [26] that can prove the absence of exploitable runtime errors. Our
analysis has the capability to classify each warning by its threat level (security-
related or not), which makes the report of the analyzer more intelligible.

We leverage anunderlying abstract numeric domain to infer numeric invariants,
which we pair with a semantic taint analysis that tracks the set of user-controlled
variables. Combining the two is necessary in order to infer an overapproximation
of the exploitable runtime errors. By taking advantage of the semantic information
inferred by the abstract numeric domain, our taint analysis achieves enhanced
precision compared to traditional methods. Furthermore, our framework can
handle programming language features that are essential to analyze real-world
programs, such as nondeterminism and runtime user input. While we formalize

7.2. MOTIVATION 129

1 #include <stdio.h>
2 #include <string.h>
3
4 void use_input(const char* input) {
5 char dest [10];
6 strcpy(dest , input);
7 }
8
9 void main() {
10 char buff [100];
11 fgets(buff , sizeof(buff), stdin);
12 use_input(buff);
13 }

FIGURE 7.1. C program with exploitable buffer overflow

our theoretical framework on a simple toy language, our implementation supports
almost the full C specification. As discussed inChapter 8, our analyzer canprove the
absence of a wide variety of exploitable runtime errors, including buffer overflows
and invalid memory accesses.

In this work, we focus on the exploitability of safety errors, such as null pointer
deferences and array out-of-bounds accesses. Nevertheless, other interesting types
of vulnerabilities could be exploited by an attacker. For instance, in algorithmic
complexity attacks [35] amalicious user exploits the fact that an application has poor
performance characteristics under certain inputs. These types of vulnerabilities
include Regular Expression Denial of Service (ReDoS) attacks, discussed in Part II
of this manuscript. Another example of software error that could be triggered by
an attacker is non-termination: if an application enters an infinite loop due to a
user action, then such a software system should be considered non-termination-
exploitable. Our framework does not currently support these different types of
errors, and in future work we would like to extend our analysis to handle them.

7.2. Motivation

Figure 7.1 represents an exploitable program where an external user can input
a sequence up to 100 characters long. At line 6, the program attempts to copy the
buffer’s contents into another array. However, due to the second array’s smaller
size, if the user inputs more than 10 characters including the terminating ’\0’,

130 CHAPTER 7. SOUND ABSTRACT SAFETY NONEXPLOITABILITY ANALYSIS

a buffer overflow occurs. A malicious user can take advantage of these types of
vulnerabilities to execute sophisticated, dangerous attacks. For instance, the fa-
mous Code Red computer worm exploited inadequate array bounds checking in
Microsoft’s IIS web server [41]. By providing a carefully crafted input string to the
application, the virus was able to perform system-level arbitrary code execution.
There are numerous other examples of well-known attacks that exploit runtime
errors: among them we find the Morris Worm (1988) [42], SQL Slammer (2003) [43],
andHeartbleed (2014) [44].Memory-related runtime errors regularly appear among
the official Top 25 Most Dangerous Software Weaknesses list yearly published by
MITRE, and from 2021 to 2023 out-of-bounds write has been ranked as themost
dangerous vulnerability [212].

While techniques such as testing and human inspection by security experts
are useful to detect (exploitable) runtime errors, the only option to rule out their
existence is through formal methods. In particular, abstract interpretation has
been effective in proving the absence of program failures in real-time avionics
software [183]. While analyses by abstract interpretation are sound, they can often
raise false positives. If the noise generated by the false alarms is too high, the
analyzer quickly becomes unusable.

Reducing the number of false alarms is usually achieved by employing more
precise abstract domains. Our work takes an orthogonal approach to the problem,
reducing the number of alarms by reporting the subset of possible runtime er-
rors that can be triggered by an attacker. As these errors are comparatively more
dangerous than the others, the report of the analyzer becomes more intelligible,
enhancing the usefulness of sound static analysis tools. Girol et al. make the same
observation, leveraging the concept of robust reachability to identify errors that are
relatively more dangerous [213]. A bug is robustly reachable if there exists a user in-
put for which the bug is always reached, regardless of the value of the uncontrolled
input. The main difference with our concept of exploitability, is that we require
the user input to be actually used in triggering the bug, while strong reachability
does not (see Section 7.9 for a detailed comparison).

Taint analysis, informally introduced in the following section, is a popular
technique used in computer security to track the flow of untrusted data within a
program, and we leverage this method to prove safety-nonexploitability. While

7.3. TAINT ANALYSIS 131

taint analyzers often rely on heuristics to track the flow of unsafe data [127], our ap-
proach is semantic, namely grounded in a definition based on the formal semantics
of programs.While formalmethods techniques extensively studied the verification
of security properties such as noninterference [123, 124, 125] (see Section 6.3), the
nonexploitability analysis is, to the best of our knowledge, uninvestigated (see
Section 7.9 for a comparison). Thiswork bridges the gap between classic safety prop-
erties analysis and security hyperproperties [50] in order to rule out the existence
of exploitable runtime errors in a software system.

7.3. Taint analysis

In this section, we informally introduce the main ideas of a technique called taint
analysis, which tracks the set of variables that are user-controlled in a program.
This type of analysis is useful in security applications to find dangerous flows
of data from untrusted user input (called sources) to sensible program locations
(called sinks). Taint analysis remains the most applied technique in static analysis
of Android apps [202], and many analyzers for real-world applications rely on
it [127, 194, 201, 214]. We introduce this technique because in this work we rely on
a semantic taint analysis in order to prove that a program is safety-nonexploitable.

The taint analysis taintedJSK : ℘(V) → ℘(V) inductively collects the set of
possibly user-controlled variables after the execution of statement S, assuming
a set of previously tainted variables T. The primary way taint is propagated is
through assignments. Consider for instance x = y, and assume that y is tainted.
Then, x also becomes tainted, as the user can influence the value of x. This type of
taint propagation is known as an explicit flow (see Example 6.8), and it is captured
by the following rule:

taintedJx = AKT ≜ { y ∈ T | y ̸= x } ∪ { x | ∃y ∈ varsJAK : y ∈ T } (7.1)

Where varsJAK is the set of variables that syntactically appear in A. Another type
of taint propagation is through implicit flows (see Example 6.9), where the values
of the variables are influenced by the program control. Consider for instance the
program if (x==0) y = 1 else y = 2. If x is tainted, the user can possibly influence
whether y is 1 or 2, so that y should be tainted. The set of tainted variables after the

132 CHAPTER 7. SOUND ABSTRACT SAFETY NONEXPLOITABILITY ANALYSIS

execution of an if statement then corresponds to: 1) the variables tainted in the
then branch; 2) the variables tainted in the else branch; 3) if the condition is tainted,
the variables that are syntactically assigned inside of the branches, denoted as
assignedJStK and assignedJSeK. The following rule detects implicit flows:

taintedJif (B) St else SeKT ≜ (7.2)

taintedJStKT ∪ taintedJSeKT

∪

assignedJStK ∪ assignedJSeK if ∃y ∈ varsJBK : y ∈ T

∅ otherwise

Since implicit flows are generally considered less dangerous than explicit flows,
most taint analyzers simply ignore them and propagate taint only through assign-
ments [127, 194, 201, 214]. This results in fewer tainted variables, but could also
miss some significant flows of untrusted data that are difficult to observe with
manual inspection. In our work, we do take implicit flows into account.

The analysis that we present in this section is sound in the sense that it re-
turns an overapproximation of the user-controlled variables after the execution
of a statement. Nevertheless, the analysis is purely syntactic, and it ignores the
semantics of the program. It is possible, by taking the values of the variables into
account, to improve the precision of the analysis. Consider for instance the pro-
gram x = y-y, and assume that y is tainted. Then, the syntactic analysis would infer
that x is tainted as well, because it is assigned to an expression that contains a
tainted variable. Nevertheless, the value of x after the execution of the assignment
is always zero, namely the user is not able to control its value. In Section 7.8, we put
forward a semantic taint analysis that takes the values of the variables into account
to achieve enhanced precision.

7.4. Syntax

TheWHILE language that we introduced in Section 6.1 does not support significant
features such as nondeterminism, which is the capability to read a random integer
at runtime. Nondeterminism is necessary in order to model the environment
in which a program is executed. Another important feature that is relevant in a

7.5. SEMANTICS 133

P := S (Programs)
S := skip (Statements)

| x = input()
| x = rand()
| x = A
| S; S
| if (B) S else S
| while (B) S

A := n ∈ Z (Arithmetic Expressions)
| x ∈ V

| A ⋄ A (⋄ ∈ { +, -, *, / })
B := tt (Boolean Expressions)

| ff
| ¬B
| B ⋄ B (⋄ ∈ { &&, || })
| A ⋄ A (⋄ ∈ { <, <=, >, >=, ==, != })

FIGURE 7.2. Syntax of the WHILE language with nondeterminism

security context is dynamic input reads, that is the capability to read a value from
the user at runtime. In Figure 7.2 we present the syntax of the WHILE language
modified to support nondeterminism and dynamic user input reads. Expressions
are deterministic, and nondeterminism is isolated in the language in specific
statements (rand, input) to simplify the presentation. The fundamental difference
between input and rand is that data read from the former is controlled by the user,
and therefore relevant from a security point of view.

7.5. Semantics

In this section, we not only extend the concrete semantics of the WHILE language
to support nondeterminism and dynamic user input, but we also put forward a
reachability semantics that associates input states with output states. Furthermore,
the semantics inductively collects runtime errors, which is necessary in order to

134 CHAPTER 7. SOUND ABSTRACT SAFETY NONEXPLOITABILITY ANALYSIS

express safety-nonexploitability.
The program states are triplets (m, i, r) ∈ M×Z∞×Z∞ ≜ S. The first element is

the programmemory, the second is the unbounded sequence of inputs provided
by the user, and the third is the unbounded sequence of random numbers. As
we discuss later in this section, by embedding the sequence of nondeterministic
choices into the states, we have the advantage of supporting nondeterministic
constructs with a deterministic semantics (i.e., to each input state, we associate
at most one output state). Observe that for the sake of conciseness and to avoid
heavy mathematical notation, in this chapter we use the same symbols introduced
in Chapter 6 for the states, domains, and concrete semantics.

We explicitly represent states in which a runtime error occurred by setting a
special return variable to 1. All error-free states have the return variable, denoted
as ret, set to 0. Programs cannot read nor write explicitly to ret, as it cannot syn-
tactically appear in statements. Our semantics relies on pairs of initial-reachable
states. A set of initial-reachable states is a relation R ∈ ℘(S× S) ≜ D.

In this section, we will define the reachability semantics of statements SJSK :
(D × D) → (D × D) by induction. The first element in the input pair is the set of
pre-post states that reach the current statement without encountering an error,
while the second is the set of pre-post states that previously resulted in an error.
SJSK(R,E) outputs both the reachable and the error states after executing S. The
set of initial states is defined as follows.

I ≜ { ((m, i, r), (m, i, r)) | (m, i, r) ∈ S,m(ret) = 0 } (7.3)

We define the semantics of programs SJP := SK ∈ D by merging the reachable
states at the end of the program with those that resulted in an error.

SJP := SK ≜ let (R,E) = SJSK(I, ∅) in R ∪ E (7.4)

We now define by structural induction the reachability semantics of statements.
As usual, the skip statement does not modify the input.

SJskipK(R,E) ≜ (R,E) (7.5)

For the input read statement, we update the memory by assigning the first

7.5. SEMANTICS 135

number in the infinite input sequence to the assigned variable, and then we shift
the input sequence. The operators hd and tl respectively extract the head and the
tail of a sequence.

SJx = input()K(R,E) ≜ (R ◦ { ((m, i, r), (m[x← hd(i)], tl(i), r) | (m, i, r) ∈ S) },E)
(7.6)

The random read statement is similar to the input read statement, but uses the
infinite sequence of random numbers.

SJx = rand()K(R,E) ≜ (R ◦ { ((m, i, r), (m[x← hd(r)], i, tl(r)) | (m, i, r) ∈ S) },E)
(7.7)

Assignments can result in errors, which in our semantics are represented as
states where ret is 1. If a runtime error occurs, the program sets ret to 1 and
adds the state to the second element of the output pair. Error states are collected
throughout the execution, and are propagated at the end of the program even in
case of non-termination. Note, however, that non-termination is not considered to
be an error. We define okJAK : D → D and errJAK : D → D to collect respectively
regular and error states in the evaluation of A.

okJAKR ≜ R ◦ { ((m, i, r), (m[x← AJAKm], i, r)) | (m, i, r) ∈ S,AJAKm ̸= }
(7.8)

errJAKR ≜ R ◦ { ((m, i, r), (m[ret← 1], i, r)) | (m, i, r) ∈ S,AJAKm = } (7.9)

SJx = AK(R,E) ≜ (okJAKR,E ∪ errJAKR) (7.10)

We define testJBK : D→ D to filter states according to a boolean condition B:

testJBKR ≜ R ◦ {((m, i, r), (m, i, r)) | (m, i, r) ∈ S,BJBKm = tt} (7.11)

We abuse the notation, and we use errJBK for the boolean evaluation of errors.

SJif (B) St else SeK(R,E) ≜ let (Rt,Et) = SJStK(testJBKR,E) in (7.12)

let (Re,Ee) = SJSeK(testJ¬BKR,E) in

(Rt ∪ Re,Et ∪ Ee ∪ errJBKR)

136 CHAPTER 7. SOUND ABSTRACT SAFETY NONEXPLOITABILITY ANALYSIS

The semantics of while statements is a classic fixpoint definition. The operator
∪̇ denotes the point-wise set union on pairs. We denote the point-wise lifting of an
operator ⋄ to tuples as ⋄̇.

SJwhile (B) SbK(R,E) ≜ let (R f ,E f) = lfp F in (testJ¬BKR f ,E f) (7.13)

where F(R1,E1) ≜ (R,E) ∪̇ SJif (B) Sb else skipK(R1,E1)

Example 7.1 (Nondeterminism and random input read)
Consider the following program:

1 x = rand();

2 if (x == 0) {

3 y = 1;

4 } else {

5 y = input ();

6 }

7 z = 1 / y;

The program sets the variable y to 1 or to a dynamic user input read depending
on a nondeterministic choice. Then, 1/y is assigned to the variable z. If
the user input is read and the user inserts 0, then the program results in a
runtime error. The semantics SJPK of the program can be partitioned into
three groups of pre-post states. First, there are the input-output pairs where
the first number in the random sequence is zero. Here, the final values of
y and z are 1. Second, there is the set of input-output pairs where the first
numbers in both the random and the input queues are non-zero. In this group,
the output values for y and z are respectively the first number in the input
sequence, and 1 divided by that number. Lastly, there are the input-output
pairs where the first number in the random sequence is not zero, but the first
number in the input sequence is zero. Here y is 0 in the output state, but z is
not changed from its initial value. On the other hand, unlike the other cases,
the variable ret is set to 1.

7.6. SAFETY-NONEXPLOITABILITY 137

7.6. Safety-nonexploitability

In this section, we first give a formal definition of safety-nonexploitability as a
2-hypersafety property [50] (see Section 6.3.2). Then, we put forward an alterna-
tive characterization based on semantically tainted (i.e. user-controlled) variables,
whichwe leverage to introduce a sound, effective analysis for safety-nonexploitability.
The proofs of the theoretical results are reported in Appendix A.

Safety-nonexploitability formalizes the idea that by modifying only the user
input at the beginning of a program, it is not possible to change whether the pro-
gram results in a runtime error or not. Since we designed our concrete semantics
to explicitly represent runtime errors as states with the return variable set to 1, we
use programmemories to differentiate erroneous states from regular ones.

Definition 7.1 (Safety-nonexploitability)

NE ∈ ℘(D)

NE ≜ {R ∈ D | ∀((m0, i0, r0), (m1, i1, r1)), ((m′0, i
′
0, r
′
0), (m

′
1, i
′
1, r
′
1)) ∈ R :

m0 = m′0, r0 = r
′
0 =⇒ m1(ret) = m′1(ret) }

Observe that our definition of safety-nonexploitability does not explicitly re-
quire user inputs at the beginning of the program to be different. Nevertheless,
since our semantics is deterministic, if two states are exactly equal at the beginning
of the program, they result in the same state at the end, and therefore the condition
m1(ret) = m′1(ret) trivially holds.

Remark 7.1 (NE is a 2-hypersafety property)
According to the taxonomy of program properties that we presented in Sec-
tion 6.3, safety-nonexploitability is a 2-hypersafety property (seeDef. 6.4). This
is due to the fact that to disproveNE it is sufficient to find two input-output
pairs that in the initial state agree on everything but the input sequence, and
differ in the output value for ret.

Safety-exploitability is defined as the negation of safety-nonexploitability. We
formally define the property because we often mention it in our examples, even

138 CHAPTER 7. SOUND ABSTRACT SAFETY NONEXPLOITABILITY ANALYSIS

though in this work we are interested in proving safety-nonexploitability.

Definition 7.2 (Safety-exploitability)

E ∈ ℘(D)

E ≜ {R ∈ D | ∃((m0, i0, r0), (m1, i1, r1)), ((m′0, i
′
0, r
′
0), (m

′
1, i
′
1, r
′
1)) ∈ R :

m0 = m′0, r0 = r
′
0 : m1(ret) ̸= m

′
1(ret) }

Example 7.2 (Nonexploitability and exploitability)
According to our definition, the following program is safety-exploitable:

x = input(); 1/x

This is because if we consider two initial states, one in which the first element
of the input sequence is zero, and the other in which it is not, we observe
that the value of ret changes. Conversely, the following program is safety-
nonexploitable:

x = rand(); 1/x

Even if there is a possible division by zero, oncewefix the sequence of random
numbers, changing the user input does not result in modifying the value of
ret. If we did not compare pairs of initial states with the same sequence of
random numbers, the program would be exploitable, even if the user input
is never read.

Example 7.3 (Comparison with robust reachability [213])
A bug is robustly reachable if there exists a user input for which the bug is
always reached, regardless of the value of the random input. Consider a
program that always results in a division by zero: 1/0. The program is safety-
nonexploitable: for any possible user input, the value of retwill always be
1. Conversely, the error is robustly reachable, as it is trivially reached for
any user input. This highlights an important difference between the two
concepts: safety-nonexploitability requires the user input to be effectively used
in triggering program errors, while robust reachability does not.

7.6. SAFETY-NONEXPLOITABILITY 139

In what follows, we show that safety-nonexploitability can be expressed in
terms of semantically tainted variables. Intuitively, a variable is tainted if an attacker
can control its value. Taint analysis [202], informally introduced in Section 7.3,
is a well-known technique in computer security to track the variables that are
controlled by external users. However, many existing approaches use heuristics
and syntactic formulations of the problem, which may be both imprecise and
unsound. In contrast, we rely on a semantic approach, which is grounded in the
formal semantics of programs. The following hyperproperty captures the set of
semantics where the value of a variable x depends on the user’s input, i.e. x is
tainted. The definition formalizes the intuition that x is tainted if, by modifying
only the user input, it is possible to change the value of x.

Definition 7.3 (Taint)
Let x ∈ V.

T : V→ ℘(D)

T(x) ≜ {R ∈ D | ∃((m0, i0, r0), (m1, i1, r1)), ((m′0, i
′
0, r
′
0), (m

′
1, i
′
1, r
′
1)) ∈ R :

m0 = m′0, r0 = r
′
0 : m1(x) ̸= m

′
1(x)}

We define abstraction and concretization functions for ℘(V).

αt : ℘(D)→ ℘(V) γt : ℘(V)→ ℘(D)

αt(R) ≜ { x ∈ V |R ⊆ T(x) } γt(T) ≜
⋂
x∈T

T(x)

There is a Galois connection between ℘(D) and ℘(V) defined by αt and γt:

(℘(D),⊆) ––––––→←––––––αt

γt
(℘(V),⊇) (7.14)

The order for the abstract domain ℘(V) is ⊇ because if we consider more relations,
we obtain fewer tainted variables common to all of these relations. Notice that this
is different from observing that larger relations present more tainted variables,
which will be discussed later in this section. By relying on T, we can formally
define when a variable is tainted in a program.

140 CHAPTER 7. SOUND ABSTRACT SAFETY NONEXPLOITABILITY ANALYSIS

Definition 7.4 (Semantically tainted variable)
A variable x is tainted in a program P if x ∈ αt({SJPK}).

Example 7.4 (Implicit flows and taint)
As already mentioned in Section 7.3, if statements can generate implicit
flows [126], namely dependencies that arise from the program control flow.
Consider the following program:

x = input(); if (x==0) y = 1 else y = 2

Depending on the user’s input, y can be either 1 or 2, and accordingly to our
semantic characterization of tainted variables, y is tainted. Taint analyzers
(e.g. [214, 201, 127, 194]) often ignore implicit flows, considering only explicit
flows (i.e., when tainting is propagated through assignments only), which
is unsound in our framework. In the analysis described in Section 7.8, we
develop an abstraction that does take implicit flows into account. Observe
that in our formal definition of taint–which is based on the semantics of a
program–there is no need to differentiate implicit and explicit flows.

If the user cannot control the value of ret, then she cannot control whether
there is a runtime error, i.e. the program is safety-nonexploitable. This is the
fundamental observation used in the following alternative characterization ofNE.

Theorem 7.1 (Chaterization ofNE with taint)
Let R ∈ D.

R ∈NE ⇐⇒ ret /∈ αt({R})

Thm. 7.1 is significant because it shows that safety-nonexploitability can be
verified by relying on a taint analysis. In contrast to classic taint analyses, simply
tracking the set of user-controlled variables is not sufficient, as to infer whether ret
is tainted we also need to detect runtime errors. In fact, ret does not syntactically
appear in programs, and its value changes only when program failures occur. To
determine when this happens, is it important to consider the values of the variables.

7.6. SAFETY-NONEXPLOITABILITY 141

Without semantic information about the values of the variables, every expression
with a division should be considered dangerous in order to be sound, and this
would result in an unacceptable loss of precision. In Section 7.8 we put forward
a sound analysis by abstract interpretation that can prove programs to be safety-
nonexploitable by combining a classic value analysis with a taint analysis. The
former detects program locations that potentially present runtime errors, while
the latter determines whether the user can trigger those errors.

Hyperproperties verification is challenging for analyses based on abstract
interpretation, because not every hyperproperty is subset-closed [50]: by computing
an overapproximation R1 of R0, the fact that R1 respects an hyperproperty does not,
in the general case, imply that R0 respects the hyperproperty. To overcome this
problem, many works rely on hypersemantics [215, 216, 217, 218, 219]: the concrete
semantics of a program is a set of sets of states, in contrast to a classic set of states.
The main disadvantage of hypersemantics is that hyperdomains [215, 216, 217] are
incompatible with regular abstract domains: the former abstract hypersemantics,
while the latter abstract regular semantics.

In this work, we rely on the standard abstract interpretation framework. In the
rest of this section, we show that an overapproximation of the concrete semantics
is sufficient to prove safety-nonexploitability. In particular, we show thatNE is
subset-closed, and the consequence is that an overapproximation of SJSK is enough
to prove safety-nonexploitabilty. A significant benefit of using the standard frame-
work is that we can combine a taint analysis with any existing over-approximating
value domain, which leads to a modular design. Furthermore, enhancing the pre-
cision of the numeric analysis improves the precision of the taint analysis as well.
Observe that, as discussed in this section, in our context, it is important to rely
on a classic safety analysis (and hence, on regular abstract numeric domains) to
identify expressions that potentially present runtime errors.

We observe that larger semantics have more tainted variables. This holds due
to the existential quantifier in Def. 7.3. Let R0,R1 ∈ D.

R0 ⊆ R1 =⇒ αt({R0}) ⊆ αt({R1}) (7.15)

By using this result, we observe that if ret is not tainted in R1, it cannot be
tainted in R0. This implies that if R1 is safety-nonexploitable, then R0 is safety-

142 CHAPTER 7. SOUND ABSTRACT SAFETY NONEXPLOITABILITY ANALYSIS

nonexploitable, namelyNE is subset-closed.

Theorem 7.2 (NE is subset-closed)
Let R0,R1 ∈ D.

(R0 ⊆ R1 and R1 ∈NE) =⇒ R0 ∈NE

Thm. 7.2 is significant because it implies that by overapproximating the seman-
tics of a program, we can still prove that it is safety-nonexploitable. This justifies
why the standard abstract interpretation framework is sufficient, and allows using
the large library of existing abstract value domains. The theorem formalizes the
intuition that if it is not possible for an attacker to trigger any runtime error, by
further reducing the semantics of the program–and hence the capabilities of the
attacker and the set of errors–she is still not able to make the program fail.

7.7. Taint concrete semantics

In this section, we define the non-computable concrete taint semantics that we
overapproximate in Section 7.8. The semantics associates the reachable states
with the set of semantically tainted variables using the abstraction function αt. As
the semantics is not structural (i.e. defined by induction on the program syntax),
we also develop a structural equivalent definition. This is necessary in order to
overapproximate the concrete taint semantics with an inductive and effectively
computable abstract semantics.

We first define the reachability taint semantics of statements StJSK : (D× D)→
(D×D×℘(V)). This semantics associates each statement with its set of truly tainted
variables by relying on αt.

StJSK(R,E) ≜ let (R1,E1) = SJSK(R,E) in (R1,E1,αt({R1 })) (7.16)

Example 7.5 (Taint concrete semantics)
Consider the following program:

x = rand(); if (x == 0) { y = input() }

7.7. TAINT CONCRETE SEMANTICS 143

1 void main() {
2 if (getchar () == ’a’)
3 rand();
4 int z = rand();
5 }

FIGURE 7.3. C program that reads pseudo-random numbers

If we consider its concrete taint semantics starting from the initial states I,
we find that the variable y is tainted in StJSK(I, ∅). This is due to the fact that
there exist two pairs of initial states that agree on everything but the input
sequence and result in different values for y. For instance, the initial states
({x 7→ 0, y 7→ 0}, 0∞, 0∞) and ({x 7→ 0, y 7→ 0}, 1∞, 0∞) result respectively in 1
and 0 for y.

We then define the reachability taint semantics for programs StJP := SK ∈
D× ℘(V). As regular and erroneous states are merged at the end of programs, we
use αt to obtain the tainted variables in the union.

StJP := SK ≜ let (R,E) = SJSK(I, ∅) in (R ∪ E,αt({R ∪ E })) (7.17)

Observe that only at the end of the program ret can become tainted: regular and
erroneous states are partitioned in the semantics for statements, so that ret is
always constant (0 for the normal executions and 1 for the others). The program P

is then safety-nonexploitable iff ret is not tainted in StJP := SK.

Remark 7.2 (Taint and rand statements)
The statement x = rand() can taint x if there are two executions in which
the sequence of random numbers is out-of-sync due to a user action. This is
because in the definition ofT we compare pairs of execution with the same
sequence of random numbers. Consider the following program:

1 x = input ();

2 if (x != 0) {

3 y = rand();

4 }

5 z = rand();

144 CHAPTER 7. SOUND ABSTRACT SAFETY NONEXPLOITABILITY ANALYSIS

The user can control whether z is assigned to the first or the secondnumber in
the random sequence. If we fix as random sequence 1, 2, . . . , we can observe
that z can be either 1 or 2 at the end of the program, depending on the user’s
input.
Observe that this behaviour is relevant in scenarios where the attacker has
partial knowledge about the uncontrolled random input. For instance, con-
sider the program in Figure 7.3, where the application first reads a character
from standard input. If the character is a, the program reads the first pseudo-
random number, and then it assigns z to rand(). As the sequence of random
numbers has not been initialized, it does not change and could be predicted
across different executions. The user can make the program assign z to the
first or second number in the sequence, being able to influence the assigned
value. Another relevant case is when a program reads a file with unmodifi-
able but public content. If an attacker can control which bytes are read, then
she can influence the execution of the program without even modifying the
contents of the file.
The fact that random read statements can potentially taint the assigned vari-
able directly derives from our semantic definition of T. By changing the
definition ofT, it is possible to choose whether random read statements can
taint assigned variables. We make the choice to use random read statements
as potential sources of tainted data because, in a context in which an attacker
has (partial) knowledge about the unmodifiable pseudo-random input, such
statements can be exploited to influence the execution of the program.While
it would be possible to support the classic model where the attacker has no
knowledge about the random input, this is less interesting in a context where
security is considered fundamental.

As we want to overapproximate the concrete taint semantics by induction on
the program structure, we give a structural equivalent definition of StJSK. The non-
computable semantics ŜtJSK : (D×D× ℘(V))→ (D×D× ℘(V)) inductively collects
the truly tainted variables. The semantics takes as additional input parameter
the set of previously tainted variables, which are used to infer the set of tainted
variables after the execution of the statement. As usual, skip statements do not

7.7. TAINT CONCRETE SEMANTICS 145

modify the input.

ŜtJskipK(R,E,T) ≜ (R,E,T) (7.18)

After the execution of x = input(), x is tainted if and only if the user can provide
two different numbers as the first element of the sequence.

ŜtJx = input()K(R,E,T) ≜ (7.19)

let (R1,E1) = SJx = input()K(R,E) in

let T1 = { y ∈ T | y ̸= x } ∪

{ x | ∃((m0, i0, r0), (m1, i1, r1)), ((m′0, i
′
0, r
′
0), (m

′
1, i
′
1, r
′
1)) ∈ R :

m0 = m′0, r0 = r
′
0 : hd(i1) ̸= hd(i′1) } in

(R1,E1,T1)

Random read statements follow the same pattern.

ŜtJx = rand()K(R,E,T) ≜ (7.20)

let (R1,E1) = SJx = rand()K(R,E) in

let T1 = { y ∈ T | y ̸= x } ∪

{ x | ∃((m0, i0, r0), (m1, i1, r1)), ((m′0, i
′
0, r
′
0), (m

′
1, i
′
1, r
′
1)) ∈ R :

m0 = m′0, r0 = r
′
0 : hd(r1) ̸= hd(r′1) } in

(R1,E1,T1)

Observe that the scenario where x becomes tainted after the execution of x =
rand() can only occur if there exist two executions that only differ in the input
sequence, resulting in one of the two reading from the random sequence at least
one additional time, as the initial random sequences are equal. This happens when
the user can control how many times there is a read from the sequence of random
numbers (see Remark 7.2).

For assignments, we taint the assigned variable if the outcome of the arithmetic
evaluation can be controlled by the user. This happens when the tainted variables
in the arithmetic expressions can change the outcome of the evaluation. Observe
that runtime errors are handled by the underlying SJSK semantics. Since they do

146 CHAPTER 7. SOUND ABSTRACT SAFETY NONEXPLOITABILITY ANALYSIS

not influence the set of tainted variables after the execution of the assignment,
runtime errors are ignored to compute the set of truly tainted variables.

ŜtJx = AK(R,E,T) ≜ (7.21)

let (R1,E1) = SJx = AK(R,E) in

let T1 = { y ∈ T | y ̸= x }∪

{ x | ∃((m0, i0, r0), (m1, i1, r1)), ((m′0, i
′
0, r
′
0), (m

′
1, i
′
1, r
′
1)) ∈ R :

m0 = m′0, r0 = r
′
0 : ̸= AJAKm1 ̸= AJAKm′1 ̸= } in

(R1,E1,T1)

As usual, the semantics of statement composition S1; S2 is defined as the exe-
cution of S2 on the result of the execution of S1.

ŜtJS1; S2K(R,E,T) ≜ ŜtJS2K(ŜtJS1K(R,E,T)) (7.22)

As discussed in this chapter, if statements can generate implicit flows [126] (see
Example 7.4). We define a helper function to compute the set of variables that
are tainted due to implicit flows. This function considers pairs of executions that
initially differ only by the user input. If two executions follow different branches
and yield different values for a variable, such a variable is tainted. This happens
when the evaluation of the boolean condition depends on the user input.

diffJif (B) St else SeK : D→ ℘(V)

diffJif (B) St else SeKR ≜ (7.23)

{ x ∈ V | ∃((m0, i0, r0), (m1, i1, r1)), ((m′0, i
′
0, r
′
0), (m

′
1, i
′
1, r
′
1)) ∈ R :

let (Rt,Et) = SJStK(testJBK{((m0, i0, r0), (m1, i1, r1))}, ∅) in

let (Re,Ee) = SJSeK(testJ¬BK{((m′0, i
′
0, r
′
0), (m

′
1, i
′
1, r
′
1))}, ∅) in

∃(m2, i2, r2) : ((m0, i0, r0), (m2, i2, r2)) ∈ Rt :

∃(m′2, i
′
2, r
′
2) : ((m

′
0, i
′
0, r
′
0), (m

′
2, i
′
2, r
′
2)) ∈ Re :

m0 = m′0, r0 = r
′
0 : BJBKm1 = tt,BJBKm′1 = ff :

m2(x) ̸= m′2(x) }

7.7. TAINT CONCRETE SEMANTICS 147

Example 7.6 (Semantically tainted variables and implicit flows)
Consider the following program:

if (x == 0) { y = x } else { y = 0 }

Consider the case in which x is tainted. While it might seem like there is
an implicit flow from x to y, this is not actually the case. In fact, even if y
is assigned in a branch whose execution depends on a tainted variable, the
value of y will always be 0 at the end of the program. Sound taint analyses
often have to classify y as tainted, as they do not usually compare the output
values of the variables after the execution of the branches. Our definition of
diffJif (B) St else SeK is strictly semantic, and does not classify y as tainted.

The tainted variables in if statements are obtained as the union of the tainted
variables in the individual branches, to which we add the tainted variables due to
implicit flows computed by diffJif (B) St else SeK.

ŜtJif (B) St else SeK(R,E,T) ≜ (7.24)

let (Rt,Et,Tt) = ŜtJStK(testJBKR,E,T \ αt({testJBKR})) in

let (Re,Ee,Te) = ŜtJSeK(testJ¬BKR,E,T \ αt({testJ¬BKR})) in

let Tte = diffJif (B) St else SeKR in

(Rt ∪ Re,Et ∪ Ee ∪ errJBKR,Tt ∪ Te ∪ Tte)

Example 7.7 (Semantically tainted variables and boolean conditions)
Observe that the tainted variables inside of the individual branches corre-
spond to the previously tainted variables to which we remove the not tainted
ones (namely αt({testJBKR})) after the execution of the boolean condition.
Consider the following program:

1 x = input ()

2 if (x == 0) {

3 ...

4 }

Even if x is tainted before executing the condition at line 2, inside of the then

148 CHAPTER 7. SOUND ABSTRACT SAFETY NONEXPLOITABILITY ANALYSIS

branch at line 3 the variable is not tainted. The reason is that at line 3, x is 0,
namely a constant whose value cannot be controlled by the user. Our rule
captures the fact that x is not tainted inside of the then branch. Let R be the
set of reachable states before line 2, and consider V = {x}:

R = { ((m0, i0, r0), (m1, i1, r1)) | m1(x) = hd(i0), i1 = tl(i0) }

Then, the set of tainted variables at line 3 corresponds to the following:

{ x } \ αt({testJx == 0KR})

= { x } \ αt({ ((m0, i0, r0), (m1, i1, r1)) | m1(x) = 0, hd(i0) = 0, i1 = tl(i0) })

= { x } \ ∅

= { x } \ { x }

= ∅

Observe that even if x is not tainted inside the then branch, any variable
that is semantically assigned within it will be tainted at the end of the
if statement due to an implicit flow. Such a dependency is captured by
diffJif (B) St else SeK.

The taint semantics for while statements is expressed as a least fixpoint.

ŜtJwhile (B) SbK(R,E,T) ≜ let (R f ,E f ,T f) = lfp F in (7.25)

(testJ¬BKR f ,E f ,T f \ αt({testJ¬BKR f }))

where F(R1,E1,T1) ≜ (R,E,T) ∪̇ ŜtJif (B) Sb else skipK(R1,E1,T1)

The following theorem formalizes that the structural and non-structural taint
semantics are equivalent. The theorem holds under the assumption that the input
parameter T of the structural version exactly corresponds to the set of tainted
variables in the reachable states.

Theorem 7.3 (Correctness of ŜtJSK)

7.8. TAINT ABSTRACT SEMANTICS 149

Let R,E ∈ D and T ∈ ℘(V) such that T = αt({R }).

StJSK(R,E)
.= ŜtJSK(R,E,T)

Thm. 7.3 is significant as it shows that the structural and the non-structural
semantics are equivalent under the assumption that the input of the structural
version exactly corresponds to the set of tainted variables in the reachable states.
At the beginning of the program, this set can be initialized to ∅, as there are no
tainted variables in the initial states.

7.8. Taint abstract semantics

In this section, we introduce a computable sound overapproximation of the con-
crete taint semantics presented in Section 7.7. This abstraction of the concrete
non-computable semantics is parametric in theunderlying abstract domainused to
overapproxiamate the values of the variables. In contrast to traditional techniques,
we leverage numeric invariants to improve the precision of the taint analysis.

Let D♯ be the abstract numeric domain used to overapproximate D, and γd :
D♯ → D be the concretization function. The domain D♯ is equipped with partial
order⊆♯

d and abstract join ∪
♯
d, while⊥

♯
d is the bottom element. We assume S♯dJSK :

(D♯ × D♯) → (D♯ × D♯) given by the numeric domain to be a sound computable
abstraction of SJSK:

∀R♯,E♯ ∈ D♯ : SJSK(γ̇d(R
♯,E♯)) ⊆̇ γ̇d(S

♯
dJSK(R

♯,E♯)) (7.26)

Where γ̇d is the point-wise application of the concretization function γd to pairs of
abstract elements. The abstract value domain also exposes the abstract functions
test♯JBK and err♯JBK to overapproximate the concrete ones.

Remark 7.3 (Numeric domains and taint analysis)
While the concrete semantics is defined as a set of input-output relations to
express safety-nonexploitability, in the numeric abstraction it is possible to
use numeric domains that simply abstract sets of states. In order to do this,
it is sufficient to abstract only the image of the relations, and then consider

150 CHAPTER 7. SOUND ABSTRACT SAFETY NONEXPLOITABILITY ANALYSIS

each possible state as initial in the concretization.
Our abstract taint semantics achieves enhanced precision by querying the
numeric domain. Nevertheless, the queries are limited to properties of the
reachable states (e.g., constancy of a variable), so that the numeric informa-
tion about the initial states does not improve the precision. This implies that
by using regular numeric domains (such as those presented in Section 6.4.3)
that do not keep information about initial states, we do not lose precision.

In the rest of the section,we structurally define the abstract taint semantics S♯tJSK :
(D♯×D♯×℘(V))→ (D♯×D♯×℘(V)). The semantics collects an overapproximation of
the reachable states, the error states, and the tainted variables. The concretization
function γ : (D♯ × D♯ × ℘(V))→ (D× D× ℘(V)) is defined as follows:

γ(R♯,E♯,T♯) ≜ (γd(R
♯),γd(E

♯),T♯) (7.27)

The soundness theorem states that the abstract semantics exhibitsmore tainted
variables than those in the concrete semantics ŜtJSK.

Theorem 7.4 (Soundness of S♯tJSK)
Let R♯,E♯ ∈ D♯ and T♯ ∈ ℘(V).

ŜtJSK(γ(R♯,E♯,T♯)) ⊆̇γ(S♯tJSK(R
♯,E♯,T♯))

In our abstract semantics, we taint ret every time there is a possible runtime
error due to user input. This ensures that if ret is not tainted in S

♯
tJSK, it will not

be tainted at the end of the program, i.e. the program is safety-nonexploitable. Let
I♯ ∈ D♯ be an overapproximation of the set of initial states, namely I ⊆ γd(I♯).

Theorem 7.5 (Soundness of the safety-nonexploitability analysis)
Let P := S be a program, and let (R♯,E♯,T♯) = S

♯
tJSK(I

♯,⊥♯
d, ∅).

ret /∈ T♯ =⇒ SJP := SK ∈NE

In the rest of this section, we define by structural induction S
♯
tJSK. The abstract

semantics collects an overapproximation of the tainted variables, and specifically

7.8. TAINT ABSTRACT SEMANTICS 151

taints ret whenever a runtime error potentially caused by the user occurs. We
will take advantage of the helper function taint♯JAK : (D♯ × ℘(V)) → B that re-
turns tt if the result of the evaluation of A could depend on tainted variables. The
classic well-known approach to implement taint♯JAK is to return tt if a tainted vari-
able syntactically occurs in A. This is sound because if there is no user-controlled
variable in A, then the user cannot influence the outcome of the evaluation. Nev-
ertheless, the approach can sometimes result in a loss of precision. For instance,
consider the program x = input(); y = x; z = x-y. The user cannot control the
value of z, as it is always 0. By using a relational abstract domain such as polyhe-
dra or octagons [158], it is possible to determine that z is constant, and therefore
that it is not tainted. We rely on the function isconst♯JAK : D♯ → B provided by
the numeric domain that returns tt if the evaluation of A in an abstract state is
constant. The implementation depends on the numeric domain, and for intervals
can be implemented as follows:

isconst♯iJAKR
♯ ≜


tt if A♯

V♯
I

JAKR♯ = ⊥i

l = u if A♯

V♯
I

JAKR♯ = [l ,u]
(7.28)

We can then define taint♯JAK as follows:

taint♯JAK(R♯,T♯) ≜



ff if R♯ = ⊥♯
d

ff else if isconst♯JAKR♯

ff else if A = n

ff else if A = x ∧ x /∈ T♯

tt else if A = x ∧ x ∈ T♯

taint♯JA1K(R♯,T♯) else if A = A1 ⋄ A2
∨ taint♯JA2K(R♯,T♯)

(7.29)

The abstract semantics for skip statements is standard.

S
♯
tJskipK(R

♯,E♯,T♯) ≜ (R♯,E♯,T♯) (7.30)

152 CHAPTER 7. SOUND ABSTRACT SAFETY NONEXPLOITABILITY ANALYSIS

As variables read from user input are the main sources of tainted data, we
always taint variables read from input statements.

S
♯
tJx = input()K(R♯,E♯,T♯) ≜ let (R♯1,E

♯
1) = S

♯
dJx = input()K(R♯,E♯) in (7.31)

(R♯1,E
♯
1,T

♯ ∪ { x })

As observed in Section 7.7 (see Remark 7.2), random read statements can taint
the assigned variable in case the user controls the position of the value which is
read in the random input sequence. For the abstract semantics, it would be sound to
always taint the assigned variable. Nevertheless, this is too coarse, and we propose
an abstraction that improves the precision. The idea is to represent the sequence of
randomnumbers as a queue: programs read from it at index i, and then increment
i. In this model, x = rand() is syntactically substituted with x = rand[i]; i = i+1.
We assume that the abstract semantics S♯dJSK can handle reading from the queue.
The special index variable i is then handled by the numeric domain as any other
variable. We taint the result of x = rand() only if i is tainted: this happens when
the user can control which number is read from the random sequence.

S
♯
tJx = rand()K(R♯,E♯,T♯) ≜ (7.32)

let (R♯1,E
♯
1) = S

♯
dJx = rand[i]; i = i+1K(R♯,E♯) in

let T♯1 = { y ∈ T
♯ | y ̸= x } ∪ { x | taint♯JiK(R♯,T♯) } in

(R♯1,E
♯
1,T

♯
1)

Assignments can present runtime errors, so that we need to taint ret in case the
user can trigger a program failure. To determine if there is an exploitable runtime
error in the evaluation of an expression, we rely on the function exploit♯JAK :
(D♯ × ℘(V)) → B. The function returns tt if there is a possible runtime error
when evaluating A, and such an error can be triggered by the user. We assume
the existence of a function zero♯JAK : D♯ → B, which is provided by the numeric
domain and returns tt if the evaluation of A is possibly zero. For instance, for
intervals it can be implemented as follows:

zero♯iJAKR
♯ ≜ [0, 0] ⊑i A

♯

V♯
I

JAKR♯ (7.33)

7.8. TAINT ABSTRACT SEMANTICS 153

By using taint♯JAK and zero♯JAK, we can define exploit♯JAK as follows.

exploit♯JnK(R♯,T♯) ≜ ff (7.34)

exploit♯JxK(R♯,T♯) ≜ ff (7.35)

exploit♯JA1 ⋄ A2K(R♯,T♯) ≜


tt if ⋄ = /, zero♯JA2KR♯, taint♯JA2K(R♯,T♯)

tt if exploit♯JA1K(R♯,T♯) or exploit♯JA2K(R♯,T♯)

ff otherwise

(7.36)

Then, assignments taint the assigned variable in case evaluation of the arith-
metic expression possibly depends on user input, and taint ret in case the user
can trigger a runtime error.

S
♯
tJx = AK(R♯,E♯,T♯) ≜ (7.37)

let (R♯1,E
♯
1) = S

♯
dJx = AK(R♯,E♯) in

let T♯1 = { y ∈ T
♯ | y ̸= x }∪

{ x | taint♯JAK(R♯,T♯) } ∪ { ret | exploit♯JAK(R♯,T♯) } in

(R♯1,E
♯
1,T

♯
1)

The abstract semantics of statements composition is standard.

S
♯
tJS1; S2K(R

♯,E♯,T♯) ≜ S
♯
tJS2K(S

♯
tJS1K(R

♯,E♯,T♯)) (7.38)

Example 7.8 (Safety-exploitability in assignments)
Consider the following program, analyzed with the interval domain:

x = input(); y = 1/x

After the execution of x = input() the variable x is tainted and can have any
value. The statement y = 1/x taints y because taint♯J1/xK returns tt, as x is

154 CHAPTER 7. SOUND ABSTRACT SAFETY NONEXPLOITABILITY ANALYSIS

tainted in the input state. Furthermore, ret is tainted as well:

exploit♯J1/xK({x 7→ [–∞, +∞]}, {x})

= zero♯JxK{x 7→ [–∞, +∞]} ∧ taint♯JxK({x 7→ [–∞, +∞]}, {x})

= [0, 0] ⊑i [–∞, +∞] ∧ x ∈ {x}

= tt

As discussed in Section 7.6 (see Example 7.4), if statements can generate implicit
flows [126], namely dependencies that originate from the program control flow.
When an attacker can control which branch of an if statement is executed, and in
that branch a variable is assigned, then the variable could be tainted.

The set of variables that become tainted as a result of a tainted condition is
traditionally overapproximated, when conditions are handled at all, with the vari-
ables that syntactically appear in the assignments of the branches (see Section 7.3).
This is a coarse overapproximation, and we can improve this result by using the
values of the variables. For instance, consider the following program:

x = y; if (y < x) { z = 10}

The assignment is never executed, and a relational analysis can deduce that
z is never assigned. The traditional syntactic approach is not sufficient to infer
this information. We rely on the function assigned♯JSK : D♯ → ℘(V) that returns
an overapproximation of the set of variables that are semantically assigned when
executing S. If there is a state in the concretization of the abstract input R♯ in which
a variable x changes value during the execution of S, then x ∈ assigned♯JSKR♯.
Observe that in case an exploitable runtime error occurs, assigned♯JSKR♯ includes
ret, which does not syntactically appear in the program. A straightforward imple-
mentation can run the regular value analysis and inductively collect the variables
that are assigned. While doing this, the function discards unreachable code and
assignments that do not modify the state, such as x = 0 when x is already 0, being
effectively more precise than a syntactic approach. In Appendix C we report an
implementation for assigned♯JSK for the interval domain. We define the following

7.8. TAINT ABSTRACT SEMANTICS 155

function to compute the set of variables that are tainted due to implicit flows.

diff♯Jif (B) St else SeK(R♯,T♯) ≜ (7.39)

{ x ∈ assigned♯Jif (B) St else SeKR♯ | taint♯JBK(R♯,T♯) }

Tainted variables can also become untainted due to conditionals. For instance,
the variable x is not tainted inside of the then branch in the following program: x =
input(); if (x==0) {...} (see Example 7.7). The reason is that x equals zero when
entering the first branch, and constants are by definition not controlled by the user.
Classic methods ignore this, and do not filter tainted variables after conditionals.
This is sound, but we can again achieve better precision by taking into account the
values of the variables. We define the function refine♯JBK : (D♯ × ℘(V))→ ℘(V) as
follows:

refine♯JBK(R♯,T♯) ≜ T♯ \ const♯(test♯JBKR♯) (7.40)

The function const♯ is provided by the abstract domain, and returns the set of
constant variables in the abstract state. For instance, in the interval domain it can
be implemented as follows:

const♯i : V♯
I → ℘(V)

const♯i (R
♯) ≜ { x | isconst♯iJxKR

♯ } (7.41)

The function refine♯JBK filters out the variables that are constant after the
execution of the test B, improving the precision of the analysis. We can now give
the definition of the abstract semantics for if statements.

S
♯
tJif (B) St else SeK(R

♯,E♯,T♯) ≜ (7.42)

let (R♯t ,E
♯
t ,T

♯
t) = S

♯
tJStK(test

♯JBKR♯,E♯, refine♯JBK(R♯,T♯)) in

let (R♯e,E
♯
e,T

♯
e) = S

♯
tJSeK(test

♯J¬BKR♯,E♯, refine♯J¬BK(R♯,T♯)) in

let T♯te = diff♯Jif (B) St else SeK(R♯,T♯) in

(R♯t ∪
♯
d R

♯
e,E

♯
t ∪

♯
d E

♯
e ∪

♯
d err

♯JBKR♯,T♯t ∪ T
♯
e ∪ T

♯
te)

156 CHAPTER 7. SOUND ABSTRACT SAFETY NONEXPLOITABILITY ANALYSIS

Example 7.9 (Abstract taint semantics and implicit flows)
The following program contains an implicit flow:

1 x = input ();

2 if (x == 0) {

3 y = 1;

4 } else {

5 y = 2;

6 }

The abstract taint semantics infers that y is tainted at the end of the program,
and this is due to the fact that y is assigned in a branch whose execution is
influenced by a tainted variable:

diff♯Jif (x==0) y = 1 else y = 2K({x 7→ ⊤}, {x})

= { z ∈ assigned♯Jif (x==0) y = 1 else y = 2K{x 7→ ⊤} | taint♯Jx==0K({x 7→ ⊤}, {x}) }

= { z ∈ {y} | x ∈ {x} }

= { y }

Observe that x is not tainted inside of the then branch, because its value is
constant. This can be observed, for instance, with an interval analysis:

refine♯Jx==0K({x 7→ [–∞, +∞]}, {x})

= {x} \ const♯i (test
♯

V♯
I

Jx==0K{x 7→ [–∞, +∞]})

= {x} \ const♯i ({x 7→ [0, 0]})

= {x} \ {x}

= ∅

Example 7.10 (Abstract taint semantics with implicit flows and random reads)
The following program demonstrates various ways in which our analysis
differs from other taint analyses.

1 x = input ();

2 y = 1;

3 if (x == 0) {

7.8. TAINT ABSTRACT SEMANTICS 157

4 z = rand();

5 if (z == 0) { 1/x }

6 if (z == 1) { y = z }

7 }

8 w = rand();

Firstly, we can infer that the program is exploitable: if the user inputs zero,
then there is the possibility, depending on the sequence of random numbers,
that a runtime error is triggered. The value analysis is important to infer that
x is zero when performing the division, so that we can deduce that there is
a division by zero. Secondly, we can use the semantic information inferred
by the numeric domain to deduce that y is not tainted. Even if y is assigned
inside of a branch that depends on the user’s input, the variable y does not
change, as it is still 1 after the execution of the statement. An interval analysis
is sufficient to deduce this. Thirdly, we can infer that the variable w is tainted:
depending on user input, it is assigned either to the first or the second value
in the sequence of random numbers.

Further precision improvements can be implemented. For instance, consider
the program if (x < 10) { y = 0} else { y = 1} . If the abstract value domain can
determine that before the execution of the statement the value of x is less than
10, the statement is semantically equivalent to y = 0. This implies that, even if x is
tainted, the user cannot control the value of y. When the analysis can infer that
one of the two branches is never executed, the if statement can be substituted with
the other branch, ignoring the implicit flows that are generated by the condition,
and improving again the precision.

The abstract semantics for while statements is a classic limit computation that
relies on the widening operator∇ to guarantee convergence in a finite number
of iterations. As the number of variables is finite, ℘(V) has finite height, so that
the widening operator for ℘(V) is simply the set union. The abstract operator
(R♯1,E

♯
1,T

♯
1) ∪̇

♯ (R♯2,E
♯
2,T

♯
2) denotes (R

♯
1 ∪

♯
d R

♯
2,E

♯
1 ∪

♯
d E

♯
2,T

♯
1 ∪ T

♯
2), and the operator

(R♯1,E
♯
1,T

♯
1)∇̇(R

♯
2,E

♯
2,T

♯
2) denotes (R

♯
1∇R

♯
2,E

♯
1∇E

♯
2,T

♯
1 ∪ T

♯
2).

S
♯
tJwhile (B) SbK(R

♯,E♯,T♯) ≜ let (R♯f ,E
♯
f ,T

♯
f) = lim Fn(⊥♯

d,⊥
♯
d, ∅) in (7.43)

158 CHAPTER 7. SOUND ABSTRACT SAFETY NONEXPLOITABILITY ANALYSIS

(test♯J¬BKR♯f ,E
♯
f , refine

♯J¬BK(R♯f ,T
♯
f))

where F(R♯1,E
♯
1,T

♯
1) ≜ let (R♯2,E

♯
2,T

♯
2) = S

♯
tJif (B) Sb else skipK(R♯1,E

♯
1,T

♯
1) in

(R♯1,E
♯
1,T

♯
1) ∇̇ ((R

♯,E♯,T♯) ∪̇♯ (R♯2,E
♯
2,T

♯
2))

Remark 7.4 (Precision improvement due to value-taint collaboration)
In principle, it is possible to first run a value analysis, and then use the in-
ferred numeric invariants in a taint analysis to prove safety-nonexploitability.
Nevertheless, as shown by the following program, executing the two together
achieves strictly superior precision.

1 x = input ();

2 if (x <= 0) {

3 x = 1;

4 }

5 while (tt) {

6 1 / x;

7 x = rand();

8 }

The invariant inferred at line 6 entails that x can be zero, so that there is a
potential runtime error. Furthermore, a taint analysis infers that x is tainted
at the same program location. By combining this information, the division
by zero is exploitable. However, if we execute the value and the taint analyses
together, we can observe that it is never true at the same time that x is 0 and
tainted, so that the program failure cannot be triggered by an attacker. Our
framework runs the two analyses together, and is thus able to prove that the
program is safety-nonexploitable.

In this section, we defined a value-sensitive semantic taint analysis that can
prove safety-nonexploitability. In Chapter 8, we implement our analysis, and we
evaluate its precision and performance compared to a classic safety analysis. Our
experiments show that we are able to filter out more than 70% of the alarms raised
by the normal analyzer in real-world programs.

7.9. RELATED WORK 159

7.9. Related work

In this section, we discuss related work. In particular, we describe secure informa-
tion flow, hyperproperties verification, security properties verification by abstract
interpretation, slicing, and error classification techniques.

7.9.1. Secure information flow

In [126] the authors propose the first mechanism to verify the secure flow of infor-
mation in a program, namely checking that a program cannot cause supposedly
nonconfidential results to depend on confidential input data. Their formulation of
the problem is based on the syntax of a program, and does not take into account its
semantics. The concept of secure information flow is related to noninterference [123,
124, 125], which is a semantic definition. A program is noninterferent if its public
output data does not depend on private input data. Checking that a program cannot
cause nonconfidential results to depend on confidential input data has been widely
studied through type systems [220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230].
Because these works perform only syntactic checks without taking into account se-
mantic information, the results are generally imprecise. For instance, let xpriv be
a secret variable, and xpub be a public variable. The program xpub = xpriv; xpub = 0
would be labelled as interferent by type systems-based approaches, which are
not precise enough to infer that the value of the public variable does not actually
depend on the secret one. In [231], the authors put forward an information flow
static analysis using a Hoare-like logic to achieve superior precision. The analysis
is sound and draws ideas from abstract interpretation theory to compute indepen-
dencies between variables. In contrast to type systems-based techniques and [231],
our approach tracks the flow of data generated by the user through a semantic taint
analysis, which achieves enhanced precision by leveraging an overapproximation
of the values of the variables.

Noninterference and safety-nonexploitabilty are closely related: nonexploitabil-
ity can be seen as a variation of noninterference where the only public output
variable is ret. Nevertheless, we do not rely on the static partitioning of variables
into public and private, as our definition supports dynamic user input reads. Our
framework can be used to prove noninterference: it is sufficient to read all private

160 CHAPTER 7. SOUND ABSTRACT SAFETY NONEXPLOITABILITY ANALYSIS

input variables at the beginning of the program, and then verify that the public
output variables are not tainted. On the contrary, traditional methods to prove
noninterference cannot prove safety-nonexploitability, as they do not take the
values of the variables into account.

The framework of abstract noninterference [232, 233, 234, 235, 236, 237, 238] is a
generalization of classic noninterference parametric on abstractions modelling
different aspects of the information flow. The observer abstraction and the max-
imal input variation abstraction are part of the attacker model, and respectively
abstract what can be observed in the output by an attacker and what she can con-
trol/learn from the input. The selection abstraction is used to select for which inputs
we check abstract noninterference. Safety-nonexploitability can be regarded as
an instance of abstract noninterference where the observer abstraction selects
from the output only the value of the return variable, the maximal input variation
abstraction is simply the identity function, and the selection abstraction checks
safety-nonexploitability only when pairs of inputs (in our framework, initial states)
agree on everything but the user input.

In [239] the authors put forward a technique to prove the absence of unwanted
accesses to objects within the context of Java Card applications [240]. Similarly to
our approach, their technique relies on an overapproximating value analysis to
prove a security property. On the other hand, proving the absence of unwanted ac-
cesses to objects is a safety property, while safety-nonexploitability is a hypersafety
property. The analysis that the authors propose in [239] collects a set of constraints
that describe the flow and the values of the data, and these constraints can be
solved using a fixpoint algorithm. The analysis they perform is an information flow
analysis, even though they do not rely directly on taint or dependency analysis.
Furthermore, in [239] implicit flows are not addressed. Other flow analyses for
Java Card applications are described in [241, 242].

7.9.2. Hyperproperties verification

Clarkson and Schneider [50] put forward the framework of hyperproperties, namely
program properties that relate different sets of executions. Hyperproperties are
able to express security policies, such as secure information flow. K-hypersafety
properties [50] can be verified with traditional techniques for safety properties on

7.9. RELATED WORK 161

the k-times self-composed system [243, 244], even though this can be computation-
ally expensive [245]. HyperLTL and HyperCTL/CTL* [246, 247] define extensions
of temporal logic able to quantify over multiple traces to address the verification
of hyperproperties. There are a number of model checking-based techniques for
hyperlogic verification [247, 248, 249, 246, 250]. MCHYPER [246], AUTOHYPER [251],
and HYPERQUBE [250] are model checkers that support the verification of hyper-
properties.

7.9.3. Security properties verification by abstract interpretation

Cousot [252] put forward a semantic definition of dependencies in the abstract
interpretation framework. He proposes a sound analysis of dependencies, capable
of proving noninterference. Similarly to us, he does not rely on hypersemantics,
using standard abstract interpretation techniques. Nevertheless, the abstract de-
pendency semantics is not structural (i.e., defined by induction on the program
syntax), as it does not take the values of variables into account. The author proposes
leveraging the values of the variables to give a structural definition of the semantics,
and this work attempts to implement such an extension. Since his definition of the
dependency semantics does not take into account the values of the variables, it
is not possible to define an analysis that leverages numeric abstract domains to
enhance the precision of the dependency analysis. Another significant difference
is that the dependencies are relative to the initial values of variables. Our analysis
computes dynamic tainting, which is the dependency of a variable from any input
statement (including those within conditionals and loops), so that it generalizes
the dependency analysis from the beginning of the program.

There are numerous papers that use an alternative version of the abstract in-
terpretation framework based on hypersemantics [219, 215, 216, 217, 218], where
the concrete domain is a set of sets of states, rather than a set of states. This is
to overcome the difficulties related to the fact that not every hyperproperty is
subset-closed, and classic overapproximation techniques seem to fail. However,
as argued in this manuscript and [252], this is not the case for standard noninter-
ference and safety-nonexploitability. Relying on the classic abstract interpretation
framework allows using the large library of existing abstract domains, and lever-
aging the semantic information inferred by such domains is not only essential

162 CHAPTER 7. SOUND ABSTRACT SAFETY NONEXPLOITABILITY ANALYSIS

for safety-nonexploitabilty, but also enhances the precision of the taint analysis.
Another approach to noninterference verification is introduced in [253], where
the authors combine abstract interpretation with symbolic execution to define a
sound analysis.

Deng and Cousot propose a semantic definition of responsibility by abstract
interpretation [254, 255, 256]. Informally, an entity is responsible for an observable
behaviour in case it is free to choose its input value, and such a choice is the first
one that ensures the occurrence of the behaviour in the execution. We believe
it is possible to instantiate responsibility to runtime errors in order to identify
the exact statement that is responsible for a failure to occur. Our definition of
safety-nonexploitability is less precise than responsibility, as we abstract away
which input read statements are involved in triggering a runtime failure. Even
if we tracked this information, our input-output semantic model is not precise
enough to capture exactly which statement is the first to ensure a bug to happen, for
which we would need a trace semantics. Nevertheless, this precision loss makes
our definition more appropriate to prove that there exists no input statement that
might be responsible for the occurrence of any runtime error.

INFER [214], PYSA [201], and JULIA [194] are static analyzers based on abstract
interpretation that support taint analysis. All these tools do not detect implicit flows,
being effectively unsound in our framework. The analyzers can track taint informa-
tion, but they cannot classify runtime errors as exploitable or not. FRAMA-C [187]
with the EVA plugin [186] supports an experimental taint analysis for C which is
capable of classifying variables as possibly user-controlled or not. The analysis
is described in the EVA user manual [257, Section 6.7.8], which is, at the time we
write, at version 28.0. The taint analysis requires to annotate functions with taint
source information, which is then propagated and checked against taint verifi-
cation assertions. Similarly to our work, EVA supports both implicit and explicit
flows. In our experiments with EVA, we observed that the taint analysis does not
perform advanced reductions with the numeric domain such as those that we
implement in our framework. Since FRAMA-C with the EVA plugin has both a taint
analysis and a value analysis, there are all the components necessary to implement
a safety-nonexploitability analysis.

7.9. RELATED WORK 163

7.9.4. Slicing

Program slicing [258, 259, 260, 261], initially introduced by Mark Weiser in [258], is
a technique to statically determine a set of statements that may affect the values of
the variables at a specific program point. Slicing has been used in different areas
such as debugging [258], software maintenance [262], comprehension [263, 264],
and re-engineering [265]. The slicing can be syntactic [258, 266] if it is based only
on the syntax of programs, or semantic [267, 268, 269, 270, 271, 272, 273] if it also
considers the semantic behaviour.

Slicing is usually backwards, meaning that the interest is on the part of the
program that affects an observation associatedwith a slicing criterion. A significant
difference with our work is that we perform a forwards analysis. In terms of slicing,
it can be thought as computing the set of program points with a runtime error
that depend on a user input statement. In this sense, our work is more closely
related to forward slicing techniques [268], where the interest is on the portion of the
program that is affected by a particular statement. Another difference with slicing
techniques is that they are focused on the program points that are impacted by
(or impact) a single statement. In our analysis, we are concerned with computing
the dependencies from all user input statements to all program statements that
present a runtime error.

7.9.5. Errors classification

In [213] the authors put forward the concept of robust reachability. A runtime error
is robustly reachable if a controlled input can make it so the bug is reached what-
ever the value of uncontrolled inputs. The authors use symbolic execution and
bounded model checking techniques to find robustly reachable bugs. Similarly to
this work, [213] classifies runtime failures by their dangerousness and filters out
less interesting alarms that do not concern security issues. Nevertheless, the con-
cept of robustly reachable runtime error is different from safety-nonexploitability:
a bug is considered robustly reachable even if it is triggered for all possible user
input, while such an error is not exploitable according to our formal definition of
exploitability. In fact, we require the user input to be actually involved in triggering
an error to consider a program exploitable.

While robust reachability ensures the perfect reproducibility of a bug, it fails

164 CHAPTER 7. SOUND ABSTRACT SAFETY NONEXPLOITABILITY ANALYSIS

to report errors that aremostly reproducible, namely errors that can be triggered
for the large majority of uncontrolled inputs but not all. To address this limitation,
the authors extend the framework to support the generation of constraints on the
uncontrolled inputs that ensure a target error to be robustly reached [274]. The
technique is useful to explain the conditions under which a certain runtime failure
can always be triggered by an attacker. In future work, we would like to apply the
ideas proposed in [274] to safety-nonexploitability in order to put forward a more
intelligible analysis. In particular, it would be interesting to report under which
conditions an exploitable runtime error can be triggered.

Other techniques relying on probability theory to differentiate classes of bugs
have been proposed. They include probabilistic model checking [275, 276], probabilis-
tic abstract interpretation [277, 278, 279, 280], quantitative robust reachability [281],
and quantitative information flow analysis [282]. An interesting extension of this
work would be to use ideas from these approaches to put forward a quantitative
exploitability analysis to classify more finely the level of threat caused by alarms.

7.10. Conclusion

In this chapter, we introduced the novel definition of safety-nonexploitability,
which we leveraged to put forward a sound analysis by abstract interpretation. The
framework supports constructs that are essential to analyze real-world programs,
such as nondeterminism and dynamic user input reads. Our analysis performs a
semantic taint analysis that achieves superior precision through a modular reduc-
tion with existing numeric abstract domains. The theoretical framework bridges
the gap between traditional safety properties and security hyperproperties, and
our analysis can rule out the existence of exploitable runtime errors in programs.
In Chapter 8 we implement our analysis in the MOPSA-NEXP tool, which we use to
evaluate the effectiveness of our technique.

In future work, we would like to extend our analysis to prove the absence of
other classes of exploitable bugs. A promising path forward is to leverage prob-
ability theory to perform a quantitative exploitability analysis capable of further
reducing the number of alarms. Another interesting extension of this work is to
adapt our framework to rule out the existence of exploitable liveness errors, such

7.10. CONCLUSION 165

as exploitable livelocks in multithreaded programs. Furthermore, in future work
we would like to enhance the analysis output to report the conditions under which
each vulnerability canbe triggered. Implementing this improvementwould require
extending our framework to support the generation of exploitability constraints,
similarly to [274]. We believe that enhancing our analysis with explanations about
the origin of warnings would make it more intelligible.

166 CHAPTER 7. SOUND ABSTRACT SAFETY NONEXPLOITABILITY ANALYSIS

Chapter 8

Safety Nonexploitability
Experimental Evaluation

We implemented and evaluated the first analyzer for safety-nonexploitability in the
MOPSA [48] static analysis platform. The analysis targets a large subset of C and it
is fully automatic. We analyzed 77 real-world programs, each up to 4,188 lines long,
taken from the GNU Coreutils package, to which we added 13,261 test cases taken
from the Juliet test suite developed by NIST [49]. We found that our tool can prove
that more than 70% of the warnings previously raised by the analyzer (3,498 over
4,715) cannot be triggered by an attacker, while incurring a performance overhead
of less than 16%. In Section 8.1 we describe some details of our implementation,
while in Section 8.2 we present our benchmarks and our experimental evaluation,
which we further analyze in Section 8.3.

8.1. Implementation

We propose MOPSA-NEXP, the first analyzer dedicated to safety-nonexploitability.
We implemented our analysis for a large subset of C in the MOPSA framework [48],
which is a modular platform to build static analyzers based on abstract interpre-
tation. MOPSA offers an extensive collection of ready-to-use abstract domains for
analyzing C and Python, providing the flexibility to tune the tradeoff between
precision and performance. MOPSA is implemented in 120,000 lines of OCaml

167

168 CHAPTER 8. SAFETY NONEXPLOITABILITY EXPERIMENTAL EVALUATION

code, and our safety-nonexploitability analysis accounts for around 10,000 of them.
Thanks to MOPSA’s modular design, we were able to use most of the C analysis
with minimal modifications.

In our implementation, we maintain taint information at the level ofmemory
blocks, i.e. we perform a field-insensitive taint analysis. While this can result in a loss
of precision, the implementation is simple and efficient. Proposing an enhanced
field-sensitive taint analysis for C is out of the scope of this manuscript, and it is left
as future work. As MOPSA performs dynamic expression rewriting to encourage a
design based on layered semantics, to retrieve sources of tainted data, during the
analysis we have to consider the expressions’ rewriting history.

Our analysis can detect a wide variety of runtime errors, including double frees,
index-out-of-bounds, andnull pointer dereferences.While the formal presentation
in this article, for the sake of simplicity, only supports division-by-zero errors, it was
trivial to adapt our analysis to identify different types of failures. In the report of
the analyzer each warning is classified as possibly exploitable or not, and we infer
a sound overapproximation of both the regular runtime errors and the exploitable
ones. All the warnings that are not labelled as exploitable are thus proved to be
nonexploitable. If the analyzer does not report any exploitable warning, then this
is a proof that the program is safety-nonexploitable. Our analysis can detect the
following runtime errors:

• Memory: null pointer dereference, invalid pointer dereference, index out-of-
bounds, dangling pointer dereference, use after free, double free, modification
of read-only memory.

• Integer arithmetic: division by zero, integer overflow, invalid bit shift operation,
invalid pointer comparison, invalid pointer subtraction.

• Floating-point arithmetic: floating point division by zero, floating point invalid
operation, floating point overflow.

• Variadic arguments: insufficient number of variadic arguments, insufficient
number of format arguments, invalid format argument type.

• Violation of a stub language contract (see [283] for more information about the
stub modeling language)

8.2. PERFORMANCE AND PRECISION EVALUATION 169

TABLE 8.1. List of C functions that generate tainted data in MOPSA-NEXP

getchar getc_unlocked getline recvfrom
getchar_unlocked getw getdelim scanf

fgetc fgets fread fscanf
fgetc_unlocked fgets_unlocked fread_unlocked sscanf

getc gets recv

The functions that read data from the user are part of the C standard library.
They include, for instance, getchar, scanf, and recv. MOPSA provides a stub mod-
elling language to specify the behaviour of library functions [283]. We have ex-
tended this language to support the fact that some functions generate tainted data,
and then we annotated our stubs for the C standard library to take into account the
taint information. In Table 8.1 we report the complete list of functions that generate
tainted data in our analysis. Differently from existing taint analysis techniques,
in our approach we do not have to explicitly annotate the sinks (i.e., the program
locations where user-controlled data is forbidden to flow), as they are not statically
known and correspond to possible runtime errors. For this reason, the user of the
analyzer does not have to annotate her source code to run the nonexploitability
analysis, which is fully automatic.

8.2. Performance and precision evaluation

To assess the usefulness of our tool, we have analyzed real-world C programs from
the GNU Coreutils package, which is a collection of command-line utilities. The
test suite is composed of 77 programs that are long up to 4,188 lines of code each.
To them, we added a large set of short C programs taken from the Juliet test suite
developed by NIST [49]. These programs contain examples of various runtime
errors that can trigger well-known security vulnerabilities. In fact, Juliet is based
on the CWE database [284], which enumerates vulnerabilities and focusses on
security. The tested runtime errors include double frees, index out-of-bounds,
and null pointer dereferences. The test cases are specifically designed to assess
the precision of static analysis tools, and use a large set of features from the C
standard. For Juliet, we considered 13,261 different test cases that amount to a
total of 2,861,980 lines of code. Each test case comes with two versions: one that

170 CHAPTER 8. SAFETY NONEXPLOITABILITY EXPERIMENTAL EVALUATION

TABLE 8.2. Safety-nonexploitability evaluation results

Test suite Domain Analyzer Alarms Time
Coreutils Intervals MOPSA 4,715 1:17:06

MOPSA-NEXP 1,217 (-74.19%) 1:28:42 (+15.05%)
Octagons MOPSA 4,673 2:22:29

MOPSA-NEXP 1,209 (-74.13%) 2:43:06 (+14.47%)
Polyhedra MOPSA 4,651 2:12:21

MOPSA-NEXP 1,193 (-74.35%) 2:30:44 (+13.89%)
Juliet Intervals MOPSA 49,957 11:32:24

MOPSA-NEXP 13,906 (-72.16%) 11:48:51 (+2.38%)
Octagons MOPSA 48,256 13:15:29

MOPSA-NEXP 13,631 (-71.75%) 13:41:47 (+3.31%)
Polyhedra MOPSA 48,256 12:54:21

MOPSA-NEXP 13,631 (-71.75%) 13:21:26 (+3.50%)

triggers a runtime failure, and one where the error is fixed. We run our analysis on
both versions. An artifact to reproduce our experimental evaluation is available
on Zenodo [54].

We compare the performance and number of alarms betweenMOPSA-NEXP and
MOPSA. The analyses are parametric in the underlying abstract numeric domain,
and we consider intervals, octagons [158], and polyhedra. Observe that to compare
only thenumber of alarms raised by the two analyzers it is not necessary to runboth
tools, as MOPSA-NEXP can report all warnings raised by MOPSA. Notice that while
the ground truth about the errors provided with Juliet can be used to evaluate the
precision of a classic safety analysis, this is not the case for safety-nonexploitability.
In fact, the benchmarks categorize the test cases as either dangerous or not, but
they do not include any information about whether an attacker can trigger the
errors. We ran our experiments on a server with 128GB of RAM, with 48 Intel Xeon
CPUs E5-2650 v4 @ 2.20GHz and Ubuntu 18.04.5 LTS. In Table 8.2 we report the
results of our experiments.

For Coreutils, in the case of intervals, our analysis was able to prove that 3,498
over 4,715 runtime errors previously reported by the analyzer cannot be triggered
by an attacker. For octagons and polyhedra, our analysis proved that respectively
3,464 and 3,458 potential runtime errors over 4,673 and 4,651 are not exploitable.

8.2. PERFORMANCE AND PRECISION EVALUATION 171

1 int i;
2 i = rand();
3 int buf [10];
4 if (i>=0) {
5 buf[i] = 1;
6 }

A. Safety-nonexploitable C
program

1 int i;
2 scanf("%d", &i);
3 int buf [10];
4 if (i>=0) {
5 buf[i] = 1;
6 }

B. Safety-exploitable C pro-
gram

1 int i;
2 scanf("%d", &i);
3 int buf [10];
4 if (i>=0&&i<10){
5 buf[i] = 1;
6 }

C. Safety-nonexploitable C
program due to index saniti-
zation

FIGURE 8.1. Simplified versions of test cases for index out-of-bounds

Overall, this results in filtering out 74.13%-74.35% of the warnings.We found similar
results for Juliet, where MOPSA-NEXP was able to prove that 71.75%-72.16% of
the warnings are not exploitable. For Coreutils, MOPSA-NEXP raises 1,193 to 1,217
warnings, which are those that can be potentially triggered by an attacker. The
user of the analyzer could prioritize those alarms over the regular ones, as they
are comparatively more dangerous.

The exploitability analysis incurs a performance overhead ranging from 13.89%
to 15.05% for Coreutils and 2.38% to 3.5% for Juliet. During the analysis we consider
expressions’ rewriting history to preserve taint information, and this history is
sensibly larger in real-world programs, which justifies the performance overhead
difference between Coreutils and Juliet. Observe that we found octagons to be
less efficient than polyhedra. This is due to the fact that MOPSA relies on the
APRON [200] library, which uses a sparse representation for polyhedra, and can be
very efficient if the number of variables is low and there are few constraints. As
octagons use a dense representation, even if their algorithmic complexity is better,
they are slightly slower in our case.

Figures 8.1.A to C represent simplified versions of test cases that trigger index
out-of-bounds failures in the Juliet benchmarks. The program in Figure 8.1.A
contains a potential runtime error. Nevertheless, the failure cannot be triggered
by an attacker, so that the program is safety-nonexploitable. In Figure 8.1.B, the
program becomes safety-exploitable as the user has control over the buffer’s read
index and can potentially trigger the index out-of-bounds error. In the last program
represented in Figure 8.1.C, even though the user controls the index i, proper
sanitization of i prevents the program from incurring in a (safety-exploitable)

172 CHAPTER 8. SAFETY NONEXPLOITABILITY EXPERIMENTAL EVALUATION

runtime error. Observe that the values of the variables are essential to prove safety-
nonexploitability in the last case. MOPSA-NEXP correctly classifies the programs
respectively as nonexploitable, exploitable, and nonexploitable.

8.3. Discussion

We observed that MOPSA-NEXP is able to consistently filter out more than 70% of
the warnings raised by the regular analyzer, while imposing low performance over-
head. The Juliet test cases show that MOPSA-NEXP can handle almost the whole C
specification, while the Coreutils experiments confirm that our analysis is effective
even for real-world programs. The significant advantage of being able to classify
each warning as security-critical or not outweighs the reasonable performance
cost overhead. Observe that the alarms raised byMOPSA-NEXP are a subset of those
reported by MOPSA. This implies that the exploitability analysis is, in the worst
case, as precise as the regular analysis.

While it would be desirable to determine howmany truly exploitable alarms
are raised by MOPSA-NEXP, this cannot be done automatically. In fact, there is
no ground truth that classifies program errors as nonexploitable or not, so that
human inspection is the only option. In future work, we would like to conduct
such an inspection.

8.4. Conclusion

We implemented our analysis in the MOPSA-NEXP tool, the first analyzer dedicated
to safety-nonexploitability. The tool is fully automatic, and to assess its effective-
ness, we evaluated it on a large set of real-world C programs. The analyzer can
consistently prove that more than 70% of the previously raised warnings cannot be
triggered by an attacker, all while incurring less than 16% performance overhead.
While usually the number of false positives is lowered by increasing the precision
of the abstract domains, we take an orthogonal approach by reporting only the
alarms that can be triggered by an attacker. By leveraging the fundamental ob-
servation that security-related warnings are more dangerous than the others, our
technique dramatically reduces the noise generated by false alarms, enhancing

8.4. CONCLUSION 173

the usefulness of the analyzer.

174 CHAPTER 8. SAFETY NONEXPLOITABILITY EXPERIMENTAL EVALUATION

Part IV

Conclusion & FutureWork

175

Chapter 9

Conclusion & FutureWork

This thesis aims at developing and implementing formal techniques that can prove
the absence of security-related vulnerabilities in software systems. We focused
our attention on two notable cases: Regular Expression Denial of Service attacks
(ReDoS), and exploitable runtime errors. For each case, we precisely characterized
the semantics of the systems that we were considering, which allowed us to for-
mally define the property wewere interested in proving. The analyses we proposed
are automatic and sound, meaning that they can rule out of existence security vul-
nerabilities in software systems without user intervention. Our experiments on
real-world data give empirical evidence of the effectiveness of the techniques that
we put forward.

For ReDoS, we started by giving a formal characterization of the matching en-
gines’ behaviour in terms of matching trees, which is, to the best of our knowledge,
the first of its kind. By relying on such a definition, we were able to precisely define
ReDoS attacks in terms of matching trees’ sizes. This characterization allowed us
to formally reason on ReDoS without having to resort to automata. We also defined
a sound analysis to extract an overapproximation of the language of words that
can trigger exponential matching. Our tool, RAT, demonstrated the effectiveness
of our approach on a large dataset of 74,669 regular expressions. In fact, RAT is
faster–often by orders of magnitude–than most other ReDoS detectors. Further-
more, RAT can report an overapproximation of the language of dangerous words,
being strictly more expressive than most other tools. While raising a low number
of false positives, RAT is the only ReDoS detector that does not report false negatives.

177

178 CHAPTER 9. CONCLUSION & FUTURE WORK

In the case of exploitable runtime errors, we considered a concrete semantics
that supports features such as nondeterminism and dynamic user input reads. We
put forward the novel property of safety-nonexploitability, which formalizes the
idea that users cannot interfere with the correctness of the program. By giving an
alternative characterization in terms of semantically tainted (i.e., user-controlled)
variables, we showed that safety-nonexploitability can be proved by relying on a
taint analysis.We defined a sound analysis by abstract interpretation that combines
taint analysiswith a classic value analysis. The numeric domain detects the runtime
errors, while the taint analysis labels those errors as exploitable or not. Moreover,
the combination of the two domains results in a strictly more precise taint analysis.
Our experiments show that our technique is able to consistently prove that more
than 70% of the alarms raised by the regular analyzer on real-world software are not
exploitable.

We believe that sound tools capable of automatically proving the absence of
security breaches are extremely valuable, particularly in a scenario where software
systems are becoming increasingly complex. Proving that a program is secure is
challenging, especially because there is no general, formally defined character-
ization of secure programs. Security is rather a set of complementary definitions,
with new ones regularly being proposed by researchers. We hope that this work
provides a new innovative perspective on security through formal reasoning and
represents a step forward towards more secure software systems.

For future work, there are numerous potential directions we would like to
explore.

Support for regular expression advanced features. Even if only a small portion
of the regular expressions in real-world programs use advanced features
such as backreferences and lookarounds, it would be interesting to extend
our ReDoS analysis in order to analyze them. This task requires enhancing
our semantic framework to natively support those features. Then, sound
abstractions would make it possible to prove the absence of ReDoS vulnera-
bilities in the whole dataset of regular expressions that we considered in our
experiments.

ReDoS superlinear vulnerabilities. Attackers that exploit superlinear but not ex-
ponential matching must be allowed to insert very large strings. For this

179

reason, superlinear vulnerabilities are sensibly less dangerous than expo-
nential ones. Nevertheless, when the exponent of the polynomial is high, the
matching can be time-consuming. While in Section 4.5 we proposed some
ideas about how to implement the ReDoS superlinear analysis, it is still not
clear how to determine the exponent of the polynomial, which is crucial to
report meaningful results to the users.

Combining ReDoS and program analyis. Our ReDoS detection framework ana-
lyzes regular expressions in isolation. It would be interesting to combine RAT
with a program analysis in order to prove the absence of ReDoS vulnerabili-
ties in the context of vulnerable programming languages such as Python or
Javascript. A promising idea is to combine a string analysis with our ReDoS
detection framework. When the analyzer encounters a regular expression
matching, it intersects the language of dangerous words with the possible
strings that can be matched. If this intersection is empty, the matching is
proved to be safe.

Extending nonexploitability to other software faults. Our definition of nonex-
ploitability classifies a program as secure when the user cannot exploit a
runtime error. It would be interesting to extend this definition to other types
of software faults. One example is the absence of livelocks in multithreaded
programs that can be triggered by an attacker. There is a long list of software
vulnerabilities that can be exploited by a malicious user, and in our work
we just scratched the surface of the possibilities that the nonexploitability
framework could offer.

Enchancing the report of the analyzer. Currently, our analysis labels warnings
as either security-critical or not. A promising research direction is to enhance
the analysis output to report the conditions under which each vulnerability
can be triggered. Implementing this improvement would require extend-
ing our framework to support the generation of exploitability constraints,
similar to what was done by Sellami et al. [274]. We believe that enhancing
our analysis with explanations about the origin of warnings would make the
analyzer more intelligible.

180 CHAPTER 9. CONCLUSION & FUTURE WORK

Combining ReDoS and nonexploitability. A promising research direction is com-
bining ReDoS and nonexploitability analyses. A program would be classified
as ReDoS-nonexploitable if there are no ReDoS vulnerabilities that can be trig-
gered by users. This analysis is best suited to target vulnerable programming
languages such as Python and Javascript, and a string analysis to overapprox-
imate the words that are matched in regular expressions would increase the
precision of the analysis. We believe that by pairing the nonexploitability
frameworkwith our ReDoS analysis, it would be possible to prove the absence
of exploitable ReDoS attacks in real-world programs.

Bibliography

[1] Dominique Brière and Pascal Traverse. AIRBUS A320/A330/A340 electrical
flight controls: A family of fault-tolerant systems. In Digest of Papers: FTCS-23,
The Twenty-Third Annual International Symposium on Fault-Tolerant Computing,
Toulouse, France, June 22-24, 1993, pages 616–623. IEEE Computer Society, 1993.
doi:10.1109/FTCS.1993.627364.

[2] Daniel Kästner, Jörg Barrho, Ulrich Wünsche, Marc Schlickling, Bernhard
Schommer, Michael Schmidt, Christian Ferdinand, Xavier Leroy, and San-
drine Blazy. Compcert: Practical experience on integrating and qualifying a
formally verified optimizing compiler. In ERTS2 2018-9th European Congress
Embedded Real-Time Software and Systems, pages 1–9, 2018.

[3] Joel Finch. Toyota sudden acceleration: a case study of the national highway
traffic safety administration-recalls for change. Loy. Consumer L. Rev., 22:472,
2009.

[4] Complete guide to gdpr compliance in the European Union, 2024. URL:
https://gdpr.eu/.

[5] Patrick Cousot. Principles of Abstract Interpretation. The MIT Press,
2022. URL: https://mitpress.mit.edu/9780262044905/principles-of-abstract-
interpretation.

[6] W. Eric Wong, Xue-Lin Li, and Phillip A. Laplante. Be more famil-
iar with our enemies and pave the way forward: A review of the roles
bugs played in software failures. J. Syst. Softw., 133:68–94, 2017. doi:
10.1016/J.JSS.2017.06.069.

[7] Herb Krasner. The cost of poor software quality in the us: A 2020 report. Proc.
Consortium Inf. Softw. QualityTM (CISQTM), pages 1–46, 2021.

181

https://doi.org/10.1109/FTCS.1993.627364
https://gdpr.eu/
https://mitpress.mit.edu/9780262044905/principles-of-abstract-interpretation
https://mitpress.mit.edu/9780262044905/principles-of-abstract-interpretation
https://doi.org/10.1016/J.JSS.2017.06.069
https://doi.org/10.1016/J.JSS.2017.06.069

182 BIBLIOGRAPHY

[8] Robert Skeel. Roundoff error and the patriot missile. SIAM News, 25(4):11,
1992.

[9] Mark Dowson. The ariane 5 software failure. ACM SIGSOFT Softw. Eng. Notes,
22(2):84, 1997. doi:10.1145/251880.251992.

[10] The ChatGPT converstational agent, 2024. URL: https://chat.openai.com/.

[11] The Gemini converstational agent, 2024. URL: https://gemini.google.com/
app.

[12] The Github Copilot AI-powered coding assistant, 2024. URL: https://
marketplace.visualstudio.com/items?itemName=GitHub.copilot.

[13] Microsoft has over a million paying Github Copilot users: CEO Nadella, 2024.
URL: https://www.zdnet.com/article/microsoft-has-over-a-million-paying-
github-copilot-users-ceo-nadella/.

[14] Hammond Pearce, Baleegh Ahmad, Benjamin Tan, Brendan Dolan-Gavitt,
and Ramesh Karri. Asleep at the keyboard? assessing the security of GitHub
Copilot’s code contributions. In Security and Privacy, SP, pages 754–768. IEEE,
2022. doi:10.1109/SP46214.2022.9833571.

[15] Owura Asare, Meiyappan Nagappan, and N. Asokan. Is GitHub’s Copilot as
bad as humans at introducing vulnerabilities in code? Empir. Softw. Eng.,
28(6):129, 2023. doi:10.1007/S10664-023-10380-1.

[16] Yujia Fu, Peng Liang, Amjed Tahir, Zengyang Li, Mojtaba Shahin, and Ji-
axin Yu. Security weaknesses of Copilot generated code in GitHub. CoRR,
abs/2310.02059, 2023. arXiv:2310.02059, doi:10.48550/ARXIV.2310.02059.

[17] ArghavanMoradi Dakhel, VahidMajdinasab, AminNikanjam, Foutse Khomh,
Michel C. Desmarais, and Zhen Ming (Jack) Jiang. GitHub Copilot AI
pair programmer: Asset or liability? J. Syst. Softw., 203:111734, 2023. doi:
10.1016/J.JSS.2023.111734.

[18] Edsger W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976. URL:
https://www.worldcat.org/oclc/01958445.

[19] The Scala programming language, 2024. URL: https://www.scala-lang.org/.

[20] The Rust programming language, 2024. URL: https://www.rust-lang.org/.

https://doi.org/10.1145/251880.251992
https://chat.openai.com/
https://gemini.google.com/app
https://gemini.google.com/app
https://marketplace.visualstudio.com/items?itemName=GitHub.copilot
https://marketplace.visualstudio.com/items?itemName=GitHub.copilot
https://www.zdnet.com/article/microsoft-has-over-a-million-paying-github-copilot-users-ceo-nadella/
https://www.zdnet.com/article/microsoft-has-over-a-million-paying-github-copilot-users-ceo-nadella/
https://doi.org/10.1109/SP46214.2022.9833571
https://doi.org/10.1007/S10664-023-10380-1
http://arxiv.org/abs/2310.02059
https://doi.org/10.48550/ARXIV.2310.02059
https://doi.org/10.1016/J.JSS.2023.111734
https://doi.org/10.1016/J.JSS.2023.111734
https://www.worldcat.org/oclc/01958445
https://www.scala-lang.org/
https://www.rust-lang.org/

BIBLIOGRAPHY 183

[21] The Swift programming language, 2024. URL: https://www.swift.org/.

[22] HenryGordonRice. Classes of recursively enumerable sets and their decision
problems. Transactions of the American Mathematical society, 74(2):358–366,
1953.

[23] Roberto Baldoni, Emilio Coppa, Daniele Cono D’Elia, Camil Demetrescu, and
Irene Finocchi. A survey of symbolic execution techniques. ACM Comput.
Surv., 51(3):50:1–50:39, 2018. doi:10.1145/3182657.

[24] Edmund M. Clarke, E. Allen Emerson, and A. Prasad Sistla. Automatic verifi-
cation of finite-state concurrent systems using temporal logic specifications.
ACM Trans. Program. Lang. Syst., 8(2):244–263, 1986. doi:10.1145/5397.5399.

[25] Edmund M. Clarke, Daniel Kroening, and Flavio Lerda. A tool for checking
ANSI-C programs. In Tools and Algorithms for the Construction and Analysis
of Systems, TACAS, volume 2988 of Lecture Notes in Computer Science, pages
168–176. Springer, 2004. doi:10.1007/978-3-540-24730-2_15.

[26] Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lattice
model for static analysis of programs by construction or approximation of
fixpoints. Principles of Programming Languages, POPL, 1977.

[27] Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent
Mauborgne, Antoine Miné, David Monniaux, and Xavier Rival. A
static analyzer for large safety-critical software. In Programming Lan-
guage Design and Implementation, PLDI, pages 196–207. ACM, 2003. doi:
10.1145/781131.781153.

[28] Alain Ourghanlian. Evaluation of static analysis tools used to assess software
important to nuclear power plant safety. Nuclear Engineering and Technology,
47(2):212–218, 2015.

[29] Microsoft: A proactive approach to more secure code, 2019. Accessed: 2023-
08-30. URL: https://msrc.microsoft.com/blog/2019/07/a-proactive-approach-
to-more-secure-code/.

[30] Munirul Ula, Zuraini Ismail, and Zailani Mohamed Sidek. A framework
for the governance of information security in banking system. Journal of
Information Assurance & Cyber Security, 2011:1–12, 2011.

https://www.swift.org/
https://doi.org/10.1145/3182657
https://doi.org/10.1145/5397.5399
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1145/781131.781153
https://doi.org/10.1145/781131.781153
https://msrc.microsoft.com/blog/2019/07/a-proactive-approach-to-more-secure-code/
https://msrc.microsoft.com/blog/2019/07/a-proactive-approach-to-more-secure-code/

184 BIBLIOGRAPHY

[31] Kjell Jørgen Hole, Vebjørn Moen, and Thomas Tjøstheim. Case study:
Online banking security. IEEE Secur. Priv., 4(2):14–20, 2006. doi:
10.1109/MSP.2006.36.

[32] Vishal R Ambhire and Prakash S Teltumde. Information security in banking
and financial industry. International Journal of Computational Engineering &
Management, 14, 2011.

[33] Matt Bishop. About penetration testing. IEEE Secur. Priv., 5(6):84–87, 2007.
doi:10.1109/MSP.2007.159.

[34] Sugandh Shah and BabuM.Mehtre. An overview of vulnerability assessment
and penetration testing techniques. J. Comput. Virol. Hacking Tech., 11(1):27–
49, 2015. doi:10.1007/S11416-014-0231-X.

[35] Scott A. Crosby and Dan S. Wallach. Denial of service via algorithmic com-
plexity attacks. In USENIX Security Symposium. USENIX Association, 2003.
doi:10.1007/11506881_10.

[36] Cristian-Alexandru Staicu and Michael Pradel. Freezing the web: A study of
ReDoS vulnerabilities in JavaScript-based web servers. In USENIX Security
Symposium, pages 361–376. USENIX Association, 2018.

[37] Stack overflow outage postmortem, 2016. Accessed: 2023-08-30. URL: https:
//stackstatus.net/post/147710624694/outage-postmortem-july-20-2016.

[38] Cloudflare’s outage postmortem, 2019. Accessed: 2023-08-30. URL: https:
//blog.cloudflare.com/details-of-the-cloudflare-outage-on-july-2-2019/.

[39] National vulnerability database: CVE-2020-3899, 2020. Accessed: 2023-08-30.
URL: https://nvd.nist.gov/vuln/detail/CVE-2020-3899.

[40] Francesco Parolini and AntoineMiné. rat - ReDoS Abstract Tester, 2022. URL:
https://github.com/parof/rat.

[41] Hal Berghel. The code red worm. Commun. ACM, 44(12):15–19, 2001. doi:
10.1145/501317.501328.

[42] Hilarie K. Orman. The morris worm: A fifteen-year perspective. IEEE Secur.
Priv., 1(5):35–43, 2003. doi:10.1109/MSECP.2003.1236233.

[43] E Schultz, Jim Mellander, and D Peterson. The MS-SQL slammer worm.
Network Security, 2003(3):10–14, 2003. doi:https://doi.org/10.1016/S1353-
4858(03)00310-6.

https://doi.org/10.1109/MSP.2006.36
https://doi.org/10.1109/MSP.2006.36
https://doi.org/10.1109/MSP.2007.159
https://doi.org/10.1007/S11416-014-0231-X
https://doi.org/10.1007/11506881_10
https://stackstatus.net/post/147710624694/outage-postmortem-july-20-2016
https://stackstatus.net/post/147710624694/outage-postmortem-july-20-2016
https://blog.cloudflare.com/details-of-the-cloudflare-outage-on-july-2-2019/
https://blog.cloudflare.com/details-of-the-cloudflare-outage-on-july-2-2019/
https://nvd.nist.gov/vuln/detail/CVE-2020-3899
https://github.com/parof/rat
https://doi.org/10.1145/501317.501328
https://doi.org/10.1145/501317.501328
https://doi.org/10.1109/MSECP.2003.1236233
https://doi.org/https://doi.org/10.1016/S1353-4858(03)00310-6
https://doi.org/https://doi.org/10.1016/S1353-4858(03)00310-6

BIBLIOGRAPHY 185

[44] Zakir Durumeric, James Kasten, David Adrian, J. Alex Halderman, Michael
Bailey, Frank Li, NicholasWeaver, Johanna Amann, Jethro Beekman,Mathias
Payer, and Vern Paxson. The matter of heartbleed. In Internet Measurement
Conference, IMC, pages 475–488. ACM, 2014. doi:10.1145/2663716.2663755.

[45] CVE-2022-36934. Available from NIST, CVE-ID CVE-2022-36934. Accessed:
2023-08-30. URL: https://nvd.nist.gov/vuln/detail/CVE-2022-36934.

[46] CVE-2019-8745. Available from NIST, CVE-ID CVE-2019-8745. Accessed: 2023-
08-30. URL: https://nvd.nist.gov/vuln/detail/CVE-2019-8745.

[47] CVE-2022-4135. Available from NIST, CVE-ID CVE-2022-4135. Accessed: 2023-
08-30. URL: https://nvd.nist.gov/vuln/detail/CVE-2022-4135.

[48] M. Journault, A.Miné, R.Monat, andA.Ouadjaout. Combinations of reusable
abstract domains for amultilingual static analyzer. In Proc. of the 11thWorking
Conference on Verified Software: Theories, Tools, and Experiments (VSTTE19),
volume 12031 of Lecture Notes in Computer Science (LNCS), pages 1–18. Springer,
2019. http://www-apr.lip6.fr/~mine/publi/article-mine-al-vstte19.pdf. doi:
10.1007/978-3-030-41600-3_1.

[49] Juliet C/C++ test suite, 2017. Accessed: 2023-08-30. URL: https://samate.nist.
gov/SARD/test-suites/112.

[50] Michael R. Clarkson and Fred B. Schneider. Hyperproperties. 21st IEEE
Computer Security Foundations Symposium, pages 51–65, 2008.

[51] Francesco Parolini and AntoineMiné. Sound static analysis of regular expres-
sions for vulnerabilities to denial of service attacks. In Theoretical Aspects of
Software Engineering (TASE), pages 73–91. Springer International Publishing,
2022. doi:10.1007/978-3-031-10363-6_6.

[52] Francesco Parolini and Antoine Miné. Sound static analysis of
regular expressions for vulnerabilities to denial of service attacks.
Science of Computer Programming, 229:102960, 2023. doi:https:
//doi.org/10.1016/j.scico.2023.102960.

[53] Francesco Parolini and Antoine Miné. Sound abstract nonexploitability
analysis. In Verification, Model Checking, and Abstract Interpretation, VMCAI,
Lecture Notes in Computer Science. Springer, 2024. https://hal.science/hal-
04268105.

https://doi.org/10.1145/2663716.2663755
https://nvd.nist.gov/vuln/detail/CVE-2022-36934
https://nvd.nist.gov/vuln/detail/CVE-2019-8745
https://nvd.nist.gov/vuln/detail/CVE-2022-4135
http://www-apr.lip6.fr/~mine/publi/article-mine-al-vstte19.pdf
https://doi.org/10.1007/978-3-030-41600-3_1
https://doi.org/10.1007/978-3-030-41600-3_1
https://samate.nist.gov/SARD/test-suites/112
https://samate.nist.gov/SARD/test-suites/112
https://doi.org/10.1007/978-3-031-10363-6_6
https://doi.org/https://doi.org/10.1016/j.scico.2023.102960
https://doi.org/https://doi.org/10.1016/j.scico.2023.102960
https://hal.science/hal-04268105
https://hal.science/hal-04268105

186 BIBLIOGRAPHY

[54] Francesco Parolini and Antoine Miné. Sound Abstract Nonexploitability
Analysis Artifact, September 2023. doi:10.5281/zenodo.8334112.

[55] Francesco Parolini. Exploitability analysis in MOPSA, 2023. URL: https:
//gitlab.com/parof/mopsa-analyzer/-/tree/exploitability-c?ref_type=heads.

[56] Alfred Tarski. A lattice-theoretical fixpoint theorem and its applications.
Pacific Journal of Mathematics, 5:285–310, 1955.

[57] Stephen Cole Kleene. Introduction to metamathematics. 1952.

[58] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to au-
tomata theory, languages, and computation, 3rd Edition. Pearson international
edition. Addison-Wesley, 2007.

[59] Michael Sipser. Introduction to the Theory of Computation. Course Technology,
Boston, MA, third edition, 2013.

[60] Peter Linz. An Introduction to Formal Languages and Automata (6th Edition).
Jones & Bartlett Learning, 2016.

[61] Scott Owens, John Reppy, and Aaron Turon. Regular-expression derivatives
re-examined. Journal of Functional Programming, 19(2):173–190, 2009. doi:
10.1017/s0956796808007090.

[62] Jan Midtgaard, Flemming Nielson, and Hanne Riis Nielson. A parametric
abstract domain for lattice-valued regular expressions. In International Static
Analysis Symposium, SAS, volume 9837 of Lecture Notes in Computer Science,
pages 338–360. Springer, 2016. doi:10.1007/978-3-662-53413-7_17.

[63] Janusz A. Brzozowski. Derivatives of regular expressions. Journal of the ACM,
11(4):481–494, 1964. doi:10.1145/321239.321249.

[64] Google’s re2 library. Accessed: 2023-08-30. URL: https://github.com/google/
re2.

[65] Russ Cox. Regular expression matching can be simple and fast, 2007.

[66] Victor Mikhaylovich Glushkov. The abstract theory of automata. Russian
Mathematical Surveys, 16(5):1, 1961.

[67] Carl Chapman and Kathryn T. Stolee. Exploring regular expression usage
and context in Python. In International Symposium on Software Testing and
Analysis, ISSTA, pages 282–293. ACM, 2016. doi:10.1145/2931037.2931073.

https://doi.org/10.5281/zenodo.8334112
https://gitlab.com/parof/mopsa-analyzer/-/tree/exploitability-c?ref_type=heads
https://gitlab.com/parof/mopsa-analyzer/-/tree/exploitability-c?ref_type=heads
https://doi.org/10.1017/s0956796808007090
https://doi.org/10.1017/s0956796808007090
https://doi.org/10.1007/978-3-662-53413-7_17
https://doi.org/10.1145/321239.321249
https://github.com/google/re2
https://github.com/google/re2
https://doi.org/10.1145/2931037.2931073

BIBLIOGRAPHY 187

[68] Louis G. Michael IV, James Donohue, James C. Davis, Dongyoon Lee, and
Francisco Servant. Regexes are hard: Decision-making, difficulties, and
risks in programming regular expressions. In International Conference
on Automated Software Engineering, ASE, pages 415–426. IEEE, 2019. doi:
10.1109/ASE.2019.00047.

[69] James Kirrage, Asiri Rathnayake, and Hayo Thielecke. Static analysis for
regular expression denial-of-service attacks. In International Conference of
Network and System Security, NSS, volume 7873 of Lecture Notes in Computer
Science, pages 135–148. Springer, 2013. doi:10.1007/978-3-642-38631-2\
_11.

[70] Asiri Rathnayake and Hayo Thielecke. Static analysis for regular expression
exponential runtime via substructural logics. CoRR, abs/1405.7058, 2014.
arXiv:1405.7058.

[71] Nicolaas Weideman, Brink van der Merwe, Martin Berglund, and Bruce W.
Watson. Analyzing matching time behavior of backtracking regular expres-
sion matchers by using ambiguity of NFA. In International Conference on
Implementation and Application of Automata, CIAA, volume 9705 of Lecture
Notes in Computer Science, pages 322–334. Springer, 2016. doi:10.1007/978-
3-319-40946-7_27.

[72] Valentin Wüstholz, Oswaldo Olivo, Marijn J. H. Heule, and Isil Dillig. Static
detection of dos vulnerabilities in programs that use regular expressions.
In International Conference on Tools and Algorithms for the Construction and
Analysis of Systems, TACAS, volume 10206 of Lecture Notes in Computer Science,
pages 3–20, 2017. doi:10.1007/978-3-662-54580-5_1.

[73] Yuju Shen, Yanyan Jiang, Chang Xu, Ping Yu, Xiaoxing Ma, and Jian Lu.
ReScue: crafting regular expression DoS attacks. In International Confer-
ence on Automated Software Engineering, ASE, pages 225–235. ACM, 2018.
doi:10.1145/3238147.3238159.

[74] The SonarSource tool. Accessed: 2023-08-30. URL: https://www.sonarsource.
com/.

[75] The safe-regex tool. Accessed: 2023-08-30. URL: https://github.com/substack/
safe-regex.

[76] The regexploit tool. Accessed: 2023-08-30. URL: https://github.com/doyensec/
regexploit.

https://doi.org/10.1109/ASE.2019.00047
https://doi.org/10.1109/ASE.2019.00047
https://doi.org/10.1007/978-3-642-38631-2_11
https://doi.org/10.1007/978-3-642-38631-2_11
http://arxiv.org/abs/1405.7058
https://doi.org/10.1007/978-3-319-40946-7_27
https://doi.org/10.1007/978-3-319-40946-7_27
https://doi.org/10.1007/978-3-662-54580-5_1
https://doi.org/10.1145/3238147.3238159
https://www.sonarsource.com/
https://www.sonarsource.com/
https://github.com/substack/safe-regex
https://github.com/substack/safe-regex
https://github.com/doyensec/regexploit
https://github.com/doyensec/regexploit

188 BIBLIOGRAPHY

[77] The redos-detector tool. Accessed: 2023-08-30. URL: https://github.com/
tjenkinson/redos-detector.

[78] Monica Lam, Ravi Sethi, JD Ullman, and Alfred Aho. Compilers: Principles,
Techniques, and Tools (2nd Edition). Addison-Wesley Longman Publishing Co.,
Inc., USA, 2006.

[79] Jeffrey E. F. Friedl. Mastering regular expressions - understand your data and be
more productive: for Perl, PHP, Java, .NET, Ruby, andmore (3. ed.). O’Reilly, 2006.
URL: https://www.oreilly.com/library/view/mastering-regular-expressions/
0596528124/.

[80] Félix López and Víctor Romero. Mastering Python Regular Expressions. Packt
Publishing Ltd, 2014. URL: https://www.packtpub.com/product/mastering-
python-regular-expressions/9781783283156.

[81] Alfred V. Aho. Algorithms for finding patterns in strings. In Jan van Leeuwen,
editor, Handbook of Theoretical Computer Science, Volume A: Algorithms and
Complexity, pages 255–300. Elsevier and MIT Press, 1990.

[82] Akimasa Morihata. Translation of regular expression with lookahead
into finite state automaton. Computer Software, 29(1):147–158, 2012. doi:
10.11309/jssst.29.1_147.

[83] Takayuki Miyazaki and Yasuhiko Minamide. Derivatives of regular ex-
pressions with lookahead. J. Inf. Process., 27:422–430, 2019. URL: https:
//doi.org/10.2197/ipsjjip.27.422, doi:10.2197/IPSJJIP.27.422.

[84] Konstantinos Mamouras and Agnishom Chattopadhyay. Efficient matching
of regular expressionswith lookaround assertions. Proc. ACMProgram. Lang.,
8(POPL):2761–2791, 2024. doi:10.1145/3632934.

[85] Rust’s regex matching engine. Accessed: 2023-03-08. URL: https://github.
com/rust-lang/regex.

[86] Rust’s regex module documentation. Accessed: 2023-03-08. URL: https:
//docs.rs/regex/latest/regex/.

[87] V8’s regex matching engine. Accessed: 2023-03-08. URL: https://github.com/
v8/v8/tree/11.3.116/src/regexp.

[88] V8 new matching engine announcement. Accessed: 2023-03-08. URL: https:
//blog.chromium.org/2009/02/irregexp-google-chromes-new-regexp.html.

https://github.com/tjenkinson/redos-detector
https://github.com/tjenkinson/redos-detector
https://www.oreilly.com/library/view/mastering-regular-expressions/0596528124/
https://www.oreilly.com/library/view/mastering-regular-expressions/0596528124/
https://www.packtpub.com/product/mastering-python-regular-expressions/9781783283156
https://www.packtpub.com/product/mastering-python-regular-expressions/9781783283156
https://doi.org/10.11309/jssst.29.1_147
https://doi.org/10.11309/jssst.29.1_147
https://doi.org/10.2197/ipsjjip.27.422
https://doi.org/10.2197/ipsjjip.27.422
https://doi.org/10.2197/IPSJJIP.27.422
https://doi.org/10.1145/3632934
https://github.com/rust-lang/regex
https://github.com/rust-lang/regex
https://docs.rs/regex/latest/regex/
https://docs.rs/regex/latest/regex/
https://github.com/v8/v8/tree/11.3.116/src/regexp
https://github.com/v8/v8/tree/11.3.116/src/regexp
https://blog.chromium.org/2009/02/irregexp-google-chromes-new-regexp.html
https://blog.chromium.org/2009/02/irregexp-google-chromes-new-regexp.html

BIBLIOGRAPHY 189

[89] Martin Berglund, Frank Drewes, and Brink van der Merwe. Analyzing catas-
trophic backtracking behavior in practical regular expression matching. In
Automata and Formal Languages, AFL, volume 151 of EPTCS, pages 109–123,
2014. doi:10.4204/EPTCS.151.7.

[90] Java’s regex matching engine. Accessed: 2023-03-08. URL: https://github.
com/openjdk/jdk/tree/jdk8-b120/jdk/src/share/classes/java/util/regex.

[91] Php’s regex matching engine. Accessed: 2023-03-08. URL: https://github.
com/php/php-src/tree/php-8.2.3/ext/pcre.

[92] PCRE2 regex engine documentation. Accessed: 2023-03-08. URL: https:
//www.pcre.org/current/doc/html/pcre2pattern.html.

[93] Perl’s regex matching engine. Accessed: 2023-03-08. URL: https://github.
com/Perl/perl5/blob/v5.37.9/regexec.c.

[94] Perl’s regex module documentation. Accessed: 2023-03-08. URL: https://
perldoc.perl.org/perlre.

[95] Python’s regex matching engine. Accessed: 2023-03-08. URL: https://github.
com/python/cpython/tree/3.11/Lib/re.

[96] Python’s regex module documentation. Accessed: 2023-03-08. URL: https:
//docs.python.org/3/library/re.html.

[97] Ruby’s regex matching engine. Accessed: 2023-03-08. URL: https://github.
com/ruby/ruby/blob/v3_2_1/re.c.

[98] Ruby’s regex module documentation. Accessed: 2023-03-08. URL: https:
//ruby-doc.org/core-2.7.0/Regexp.html.

[99] Valentin Antimirov. Partial derivatives of regular expressions and finite
automaton constructions. Theoretical Computer Science, 155(2):291–319, 1996.
doi:https://doi.org/10.1016/0304-3975(95)00182-4.

[100] The Vim text editor. Accessed: 2023-03-08. URL: https://github.com/vim/vim.

[101] POSIX Standard for Regular Expressions. Accessed: 2023-08-30. URL: https:
//pubs.opengroup.org/onlinepubs/009696899/basedefs/xbd_chap09.html.

[102] Regexlib database. Accessed: 2023-08-30. URL: https://regexlib.com/.

https://doi.org/10.4204/EPTCS.151.7
https://github.com/openjdk/jdk/tree/jdk8-b120/jdk/src/share/classes/java/util/regex
https://github.com/openjdk/jdk/tree/jdk8-b120/jdk/src/share/classes/java/util/regex
https://github.com/php/php-src/tree/php-8.2.3/ext/pcre
https://github.com/php/php-src/tree/php-8.2.3/ext/pcre
https://www.pcre.org/current/doc/html/pcre2pattern.html
https://www.pcre.org/current/doc/html/pcre2pattern.html
https://github.com/Perl/perl5/blob/v5.37.9/regexec.c
https://github.com/Perl/perl5/blob/v5.37.9/regexec.c
https://perldoc.perl.org/perlre
https://perldoc.perl.org/perlre
https://github.com/python/cpython/tree/3.11/Lib/re
https://github.com/python/cpython/tree/3.11/Lib/re
https://docs.python.org/3/library/re.html
https://docs.python.org/3/library/re.html
https://github.com/ruby/ruby/blob/v3_2_1/re.c
https://github.com/ruby/ruby/blob/v3_2_1/re.c
https://ruby-doc.org/core-2.7.0/Regexp.html
https://ruby-doc.org/core-2.7.0/Regexp.html
https://doi.org/https://doi.org/10.1016/0304-3975(95)00182-4
https://github.com/vim/vim
https://pubs.opengroup.org/onlinepubs/009696899/basedefs/xbd_chap09.html
https://pubs.opengroup.org/onlinepubs/009696899/basedefs/xbd_chap09.html
https://regexlib.com/

190 BIBLIOGRAPHY

[103] Theofilos Petsios, Jason Zhao, Angelos D. Keromytis, and Suman Jana. Slow-
fuzz: Automated domain-independent detection of algorithmic complexity
vulnerabilities. In Conference on Computer and Communications Security, CCS,
pages 2155–2168. ACM, 2017. doi:10.1145/3133956.3134073.

[104] Node package manager. Accessed: 2023-08-30. URL: https://www.npmjs.
com/.

[105] Martin Berglund and Brink van der Merwe. On the semantics of regular
expression parsing in the wild. Theoretical Computer Science, 679:69–82, 2017.
doi:10.1016/j.tcs.2016.09.006.

[106] Cyril Allauzen, Mehryar Mohri, and Ashish Rastogi. General algorithms
for testing the ambiguity of finite automata and the double-tape ambiguity
of finite-state transducers. International Journal of Foundations of Computer
Science, 22(04):883–904, June 2011. doi:10.1142/s0129054111008477.

[107] Andreas Weber and Helmut Seidl. On the degree of ambiguity of fi-
nite automata. Theorertical Computer Science, 88(2):325–349, 1991. doi:
10.1016/0304-3975(91)90381-B.

[108] Brendan Cody-Kenny, Michael Fenton, Adrian Ronayne, Eoghan Considine,
Thomas McGuire, and Michael O’Neill. A search for improved performance
in regular expressions. In Genetic and Evolutionary Computation Conference,
GECCO, pages 1280–1287, 2017. doi:10.1145/3071178.3071196.

[109] Yeting Li, Zhiwu Xu, Jialun Cao, Haiming Chen, Tingjian Ge, Shing-Chi Che-
ung, and Haoren Zhao. Flashregex: Deducing anti-redos regexes from exam-
ples. In International Conference on Automated Software Engineering, ASE 2020,
pages 659–671, 2020. doi:10.1145/3324884.3416556.

[110] Rong Pan, Qinheping Hu, Gaowei Xu, and Loris D’Antoni. Automatic repair
of regular expressions. Proceedings of the ACM on Programming Languages,
3(OOPSLA):139:1–139:29, 2019. doi:10.1145/3360565.

[111] J. C. Davis, F. Servant, and D. Lee. Using selective memoization to de-
feat regular expression denial of service (ReDoS). In IEEE Symposium
on Security and Privacy, SP, pages 543–559. IEEE Computer Society, 2021.
doi:10.1109/SP40001.2021.00032.

[112] Cheng-Hung Lin, Chen-Hsiung Liu, and Shih-Chieh Chang. Accelerat-
ing regular expression matching using hierarchical parallel machines on

https://doi.org/10.1145/3133956.3134073
https://www.npmjs.com/
https://www.npmjs.com/
https://doi.org/10.1016/j.tcs.2016.09.006
https://doi.org/10.1142/s0129054111008477
https://doi.org/10.1016/0304-3975(91)90381-B
https://doi.org/10.1016/0304-3975(91)90381-B
https://doi.org/10.1145/3071178.3071196
https://doi.org/10.1145/3324884.3416556
https://doi.org/10.1145/3360565
https://doi.org/10.1109/SP40001.2021.00032

BIBLIOGRAPHY 191

GPU. In Global Communications Conference, GLOBECOM, pages 1–5, 2011.
doi:10.1109/GLOCOM.2011.6133663.

[113] Xiaodong Yu and Michela Becchi. GPU acceleration of regular expres-
sion matching for large datasets: exploring the implementation space.
In Computing Frontiers Conference, CF, pages 18:1–18:10, 2013. doi:
10.1145/2482767.2482791.

[114] Michela Becchi and Srihari Cadambi. Memory-efficient regular expres-
sion search using state merging. In Joint Conference of the IEEE Com-
puter and Communications Societies, INFOCOM, pages 1064–1072, 2007. doi:
10.1109/INFCOM.2007.128.

[115] The snort database. http://www.snort.org/, 2020. Accessed: 2023-08-30.

[116] The pypi packet manager. https://pypi.org/. Accessed: 2023-08-30.

[117] James C. Davis, Christy A. Coghlan, Francisco Servant, and Dongyoon
Lee. The impact of regular expression denial of service (ReDoS) in prac-
tice: an empirical study at the ecosystem scale. In Joint Meeting on Euro-
pean Software Engineering Conference and Symposium on the Foundations of
Software Engineering, ESEC/SIGSOFT FSE, pages 246–256. ACM, 2018. doi:
10.1145/3236024.3236027.

[118] C language standard. Accessed: 2023-10-05. URL: https://www.iso.org/
standard/29237.html.

[119] ECMASCRIPT 2023 language specification. Accessed: 2023-10-
05. URL: https://www.ecma-international.org/publications-and-
standards/standards/ecma-262/.

[120] Hanne Riis Nielson and Flemming Nielson. Semantics with applications,
volume 104. Springer, 1992.

[121] Patrick Cousot. Constructive design of a hierarchy of semantics of a transition
system by abstract interpretation. Theor. Comput. Sci., 277(1-2):47–103, 2002.
doi:10.1016/S0304-3975(00)00313-3.

[122] Bowen Alpern and Fred B. Schneider. Recognizing safety and liveness. Dis-
tributed Comput., 2(3):117–126, 1987. doi:10.1007/BF01782772.

https://doi.org/10.1109/GLOCOM.2011.6133663
https://doi.org/10.1145/2482767.2482791
https://doi.org/10.1145/2482767.2482791
https://doi.org/10.1109/INFCOM.2007.128
https://doi.org/10.1109/INFCOM.2007.128
http://www.snort.org/
https://pypi.org/
https://doi.org/10.1145/3236024.3236027
https://doi.org/10.1145/3236024.3236027
https://www.iso.org/standard/29237.html
https://www.iso.org/standard/29237.html
https://www.ecma-international.org/publications-and-standards/standards/ecma-262/
https://www.ecma-international.org/publications-and-standards/standards/ecma-262/
https://doi.org/10.1016/S0304-3975(00)00313-3
https://doi.org/10.1007/BF01782772

192 BIBLIOGRAPHY

[123] Ellis S. Cohen. Information transmission in computational systems. In
Symposium on Operating System Principles, SOSP, pages 133–139. ACM, 1977.
doi:10.1145/800214.806556.

[124] Joseph A. Goguen and José Meseguer. Security policies and security mod-
els. In Security and Privacy, pages 11–20. IEEE Computer Society, 1982.
doi:10.1109/SP.1982.10014.

[125] Joseph A. Goguen and José Meseguer. Unwinding and inference con-
trol. In Security and Privacy, pages 75–87. IEEE Computer Society, 1984.
doi:10.1109/SP.1984.10019.

[126] Dorothy E. Denning and Peter J. Denning. Certification of programs
for secure information flow. Commun. ACM, 20(7):504–513, 1977. doi:
10.1145/359636.359712.

[127] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bar-
tel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick D. McDaniel.
Flowdroid: precise context, flow, field, object-sensitive and lifecycle-aware
taint analysis for android apps. In Programming Language Design and Imple-
mentation, PLDI, pages 259–269. ACM, 2014. doi:10.1145/2594291.2594299.

[128] Alan Mathison Turing et al. On computable numbers, with an application to
the entscheidungsproblem. J. of Math, 58(345-363):5, 1936.

[129] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program De-
velopment - Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical
Computer Science. Springer, 2004. doi:10.1007/978-3-662-07964-5.

[130] LeonardodeMoura andSebastianUllrich. The lean 4 theoremprover andpro-
gramming language. In Automated Deduction, CADE, volume 12699 of Lecture
Notes in Computer Science, pages 625–635. Springer, 2021. doi:10.1007/978-
3-030-79876-5_37.

[131] Makarius Wenzel, Lawrence C. Paulson, and Tobias Nipkow. The isabelle
framework. In Theorem Proving in Higher Order Logics, TPHOLs, volume
5170 of Lecture Notes in Computer Science, pages 33–38. Springer, 2008. doi:
10.1007/978-3-540-71067-7_7.

[132] Ana Bove, Peter Dybjer, and Ulf Norell. A brief overview of agda - a func-
tional language with dependent types. In Theorem Proving in Higher Order

https://doi.org/10.1145/800214.806556
https://doi.org/10.1109/SP.1982.10014
https://doi.org/10.1109/SP.1984.10019
https://doi.org/10.1145/359636.359712
https://doi.org/10.1145/359636.359712
https://doi.org/10.1145/2594291.2594299
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1007/978-3-030-79876-5_37
https://doi.org/10.1007/978-3-030-79876-5_37
https://doi.org/10.1007/978-3-540-71067-7_7
https://doi.org/10.1007/978-3-540-71067-7_7

BIBLIOGRAPHY 193

Logics, TPHOLs, volume 5674 of Lecture Notes in Computer Science, pages 73–78.
Springer, 2009. doi:10.1007/978-3-642-03359-9_6.

[133] Nikhil Swamy, Catalin Hritcu, Chantal Keller, Aseem Rastogi, Antoine
Delignat-Lavaud, Simon Forest, Karthikeyan Bhargavan, Cédric Fournet,
Pierre-Yves Strub, Markulf Kohlweiss, Jean Karim Zinzindohoue, and San-
tiago Zanella Béguelin. Dependent types and multi-monadic effects in F.
In Symposium on Principles of Programming Languages, POPL, pages 256–270.
ACM, 2016. doi:10.1145/2837614.2837655.

[134] K. RustanM. Leino. Dafny: An automatic program verifier for functional cor-
rectness. In Logic for Programming, Artificial Intelligence, and Reasoning, LPAR,
volume 6355 of Lecture Notes in Computer Science, pages 348–370. Springer,
2010. doi:10.1007/978-3-642-17511-4_20.

[135] Jean-ChristopheFilliâtre andAndrei Paskevich. Why3 -where programsmeet
provers. In Programming Languages and Systems, ESOP, volume 7792 of Lecture
Notes in Computer Science, pages 125–128. Springer, 2013. doi:10.1007/978-
3-642-37036-6_8.

[136] Bernard Carré and Johnathan Randall Garnsworthy. SPARK - an annotated
ada subset for safety-critical programming. In TRI-ADA, pages 392–402. ACM,
1990. doi:10.1145/255471.255563.

[137] Patrick Baudin, François Bobot, David Bühler, Loïc Correnson, Florent Kirch-
ner, Nikolai Kosmatov, André Maroneze, Valentin Perrelle, Virgile Prevosto,
Julien Signoles, and Nicky Williams. The dogged pursuit of bug-free C pro-
grams: the frama-c software analysis platform. Commun. ACM, 64(8):56–68,
2021. doi:10.1145/3470569.

[138] Fish Wang and Yan Shoshitaishvili. Angr - the next generation of binary
analysis. In IEEE Cybersecurity Development, SecDev, pages 8–9. IEEEComputer
Society, 2017. doi:10.1109/SECDEV.2017.14.

[139] Galois Inc. Crucible. Accessed: 2023-11-09. URL: https://github.com/
GaloisInc/crucible.

[140] Robin David, Sébastien Bardin, Thanh Dinh Ta, Laurent Mounier, Josselin
Feist, Marie-Laure Potet, and Jean-Yves Marion. BINSEC/SE: a dynamic
symbolic execution toolkit for binary-level analysis. In Software Analysis,
Evolution, and Reengineering, SANER, pages 653–656. IEEE Computer Society,
2016. doi:10.1109/SANER.2016.43.

https://doi.org/10.1007/978-3-642-03359-9_6
https://doi.org/10.1145/2837614.2837655
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-37036-6_8
https://doi.org/10.1007/978-3-642-37036-6_8
https://doi.org/10.1145/255471.255563
https://doi.org/10.1145/3470569
https://doi.org/10.1109/SECDEV.2017.14
https://github.com/GaloisInc/crucible
https://github.com/GaloisInc/crucible
https://doi.org/10.1109/SANER.2016.43

194 BIBLIOGRAPHY

[141] Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. KLEE: unassisted
and automatic generation of high-coverage tests for complex systems pro-
grams. In Operating Systems Design and Implementation, OSDI, pages 209–224.
USENIX Association, 2008. URL: http://www.usenix.org/events/osdi08/tech/
full_papers/cadar/cadar.pdf.

[142] Kenneth L. McMillan. Symbolic model checking. Kluwer, 1993. doi:
10.1007/978-1-4615-3190-6.

[143] DirkBeyer andM. ErkanKeremoglu. CPAchecker: A tool for configurable soft-
ware verification. In Computer Aided Verification, CAV, volume 6806 of Lecture
Notes in Computer Science, pages 184–190. Springer, 2011. doi:10.1007/978-
3-642-22110-1_16.

[144] Matthias Heizmann, Yu-Fang Chen, Daniel Dietsch, Marius Greitschus,
Jochen Hoenicke, Yong Li, Alexander Nutz, Betim Musa, Christian Schilling,
Tanja Schindler, and Andreas Podelski. Ultimate automizer and the search
for perfect interpolants - (competition contribution). In Tools and Algorithms
for the Construction and Analysis of Systems, TACAS, volume 10806 of Lecture
Notes in Computer Science, pages 447–451. Springer, 2018. doi:10.1007/978-
3-319-89963-3_30.

[145] Daniel Kroening, Peter Schrammel, and Michael Tautschnig. CBMC: the C
bounded model checker. CoRR, abs/2302.02384, 2023. arXiv:2302.02384,
doi:10.48550/ARXIV.2302.02384.

[146] Antoine Miné. Tutorial on static inference of numeric invariants by ab-
stract interpretation. Foundations and Trends in Programming Languages
(FnTPL), 4(3–4):120–372, 2017. http://www-apr.lip6.fr/~mine/publi/article-
mine-FTiPL17.pdf. doi:10.1561/2500000034.

[147] Xavier Rival and Kwangkeun Yi. Introduction to static analysis: an abstract
interpretation perspective. Mit Press, 2020.

[148] Caterina Urban. The abstract domain of segmented ranking functions. In
Static Analysis Symposium, SAS, volume 7935 of Lecture Notes in Computer
Science, pages 43–62. Springer, 2013. doi:10.1007/978-3-642-38856-9_5.

[149] Caterina Urban and Antoine Miné. An abstract domain to infer ordinal-
valued ranking functions. In Zhong Shao, editor, Programming Languages and
Systems - 23rd European Symposium on Programming, ESOP 2014, Held as Part of

http://www.usenix.org/events/osdi08/tech/full_papers/cadar/cadar.pdf
http://www.usenix.org/events/osdi08/tech/full_papers/cadar/cadar.pdf
https://doi.org/10.1007/978-1-4615-3190-6
https://doi.org/10.1007/978-1-4615-3190-6
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-319-89963-3_30
https://doi.org/10.1007/978-3-319-89963-3_30
http://arxiv.org/abs/2302.02384
https://doi.org/10.48550/ARXIV.2302.02384
http://www-apr.lip6.fr/~mine/publi/article-mine-FTiPL17.pdf
http://www-apr.lip6.fr/~mine/publi/article-mine-FTiPL17.pdf
https://doi.org/10.1561/2500000034
https://doi.org/10.1007/978-3-642-38856-9_5

BIBLIOGRAPHY 195

the European Joint Conferences on Theory and Practice of Software, ETAPS 2014,
Grenoble, France, April 5-13, 2014, Proceedings, volume 8410 of Lecture Notes in
Computer Science, pages 412–431. Springer, 2014. doi:10.1007/978-3-642-
54833-8_22.

[150] Caterina Urban. Static Analysis by Abstract Interpretation of Functional Tem-
poral Properties of Programs. (Analyse Statique par Interprétation Abstraite de
Propriétés Temporelles Fonctionnelles des Programmes). PhD thesis, École Nor-
male Supérieure, Paris, France, 2015. URL: https://tel.archives-ouvertes.fr/tel-
01176641.

[151] Frédéric Benhamou, Frédéric Goualard, Laurent Granvilliers, and Jean-
Francois Puget. Revising hull and box consistency. In International Conference
on Logic Programming, ICLP, pages 230–244. MIT Press, 1999.

[152] R. Monat, M. Milanese, F. Parolini, J. Boillot, A. Ouadjaout, and A. Miné.
Mopsa-c: Improved verification for c programs, simple validation of correct-
ness witnesses (competition contribution). 2024.

[153] Arie Gurfinkel and Sagar Chaki. Boxes: A symbolic abstract domain of boxes.
In Static Analysis Symposium, SAS, volume 6337 of Lecture Notes in Computer
Science, pages 287–303. Springer, 2010. doi:10.1007/978-3-642-15769-1\
_18.

[154] Philippe Granger. Static analysis of arithmetical congruences. International
Journal of Computer Mathematics, 30(3-4):165–190, 1989.

[155] Philippe Granger. Static analyses of congruence properties on rational
numbers (extended abstract). In Static Analysis Symposium, SAS, volume
1302 of Lecture Notes in Computer Science, pages 278–292. Springer, 1997.
doi:10.1007/BFB0032748.

[156] Michael Karr. Affine relationships among variables of a program. Acta
Informatica, 6:133–151, 1976. doi:10.1007/BF00268497.

[157] Patrick Cousot and Nicolas Halbwachs. Automatic discovery of linear re-
straints among variables of a program. In Principles of Programming Lan-
guages, POPL, pages 84–96. ACM Press, 1978. doi:10.1145/512760.512770.

[158] Antoine Miné. The octagon abstract domain. Higher-Order and Symbolic
Computation (HOSC), 19(1):31–100, 2006. http://www-apr.lip6.fr/~mine/publi/
article-mine-HOSC06.pdf. doi:10.1007/s10990-006-8609-1.

https://doi.org/10.1007/978-3-642-54833-8_22
https://doi.org/10.1007/978-3-642-54833-8_22
https://tel.archives-ouvertes.fr/tel-01176641
https://tel.archives-ouvertes.fr/tel-01176641
https://doi.org/10.1007/978-3-642-15769-1_18
https://doi.org/10.1007/978-3-642-15769-1_18
https://doi.org/10.1007/BFB0032748
https://doi.org/10.1007/BF00268497
https://doi.org/10.1145/512760.512770
http://www-apr.lip6.fr/~mine/publi/article-mine-HOSC06.pdf
http://www-apr.lip6.fr/~mine/publi/article-mine-HOSC06.pdf
https://doi.org/10.1007/s10990-006-8609-1

196 BIBLIOGRAPHY

[159] A. Miné. Field-sensitive value analysis of embedded C programs with union
types andpointer arithmetics. In Proc. of the ACMSIGPLAN/SIGBEDConference
on Languages, Compilers, and Tools for Embedded Systems (LCTES’06), pages 54–
63. ACM, 2006. http://www-apr.lip6.fr/~mine/publi/article-mine-lctes06.pdf.

[160] A. Miné. Static analysis by abstract interpretation of concurrent programs.
Technical report, École normale supérieure, May 2013. http://www-apr.lip6.
fr/~mine/hdr/hdr-compact-col.pdf.

[161] Gogul Balakrishnan and Thomas W. Reps. Recency-abstraction for heap-
allocated storage. In Static Analysis Symposium, SAS, volume 4134 of
Lecture Notes in Computer Science, pages 221–239. Springer, 2006. doi:
10.1007/11823230_15.

[162] Raphaël Monat. Static type and value analysis by abstract interpretation of
Python programs with native C libraries. (Analyse statique, de type et de valeur,
par interprétation abstraite, de programmes Python utilisant des librairies C). PhD
thesis, Sorbonne University, Paris, France, 2021. URL: https://tel.archives-
ouvertes.fr/tel-03533030.

[163] Denis Gopan, Thomas W. Reps, and Shmuel Sagiv. A framework for numeric
analysis of array operations. In Jens Palsberg and Martín Abadi, editors,
Principles of Programming Languages, POPL, pages 338–350. ACM, 2005. doi:
10.1145/1040305.1040333.

[164] Sumit Gulwani, Bill McCloskey, and Ashish Tiwari. Lifting abstract inter-
preters to quantified logical domains. In George C. Necula and PhilipWadler,
editors, Principles of Programming Languages, POPL, pages 235–246. ACM, 2008.
doi:10.1145/1328438.1328468.

[165] Nicolas Halbwachs and Mathias Péron. Discovering properties about arrays
in simple programs. In Rajiv Gupta and Saman P. Amarasinghe, editors,
Conference on Programming Language Design and Implementation, PLDI, pages
339–348. ACM, 2008. doi:10.1145/1375581.1375623.

[166] Patrick Cousot, Radhia Cousot, and Francesco Logozzo. A parametric seg-
mentation functor for fully automatic and scalable array content analysis. In
Thomas Ball and Mooly Sagiv, editors, Principles of Programming Languages,
POPL, pages 105–118. ACM, 2011. doi:10.1145/1926385.1926399.

http://www-apr.lip6.fr/~mine/publi/article-mine-lctes06.pdf
http://www-apr.lip6.fr/~mine/hdr/hdr-compact-col.pdf
http://www-apr.lip6.fr/~mine/hdr/hdr-compact-col.pdf
https://doi.org/10.1007/11823230_15
https://doi.org/10.1007/11823230_15
https://tel.archives-ouvertes.fr/tel-03533030
https://tel.archives-ouvertes.fr/tel-03533030
https://doi.org/10.1145/1040305.1040333
https://doi.org/10.1145/1040305.1040333
https://doi.org/10.1145/1328438.1328468
https://doi.org/10.1145/1375581.1375623
https://doi.org/10.1145/1926385.1926399

BIBLIOGRAPHY 197

[167] Raphaël Monat, Abdelraouf Ouadjaout, and Antoine Miné. Static type anal-
ysis by abstract interpretation of python programs. In European Confer-
ence on Object-Oriented Programming, ECOOP, volume 166 of LIPIcs, pages
17:1–17:29. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi:
10.4230/LIPICS.ECOOP.2020.17.

[168] Simon Holm Jensen, Anders Møller, and Peter Thiemann. Type analysis for
javascript. In Static Analysis Symposium, SAS, volume 5673 of Lecture Notes
in Computer Science, pages 238–255. Springer, 2009. doi:10.1007/978-3-642-
03237-0_17.

[169] Francesco Logozzo. Analyse statique modulaire des langages à objet. (Modu-
lar static analysis of object-oriented languages). PhD thesis, École Polytech-
nique, Palaiseau, France, 2004. URL: https://tel.archives-ouvertes.fr/pastel-
00000896.

[170] Bor-Yuh Evan Chang and Xavier Rival. Relational inductive shape analysis.
In George C. Necula and Philip Wadler, editors, Principles of Programming
Languages, POPL, pages 247–260. ACM, 2008. doi:10.1145/1328438.1328469.

[171] Ahmed Bouajjani, Cezara Dragoi, Constantin Enea, and Mihaela Sighire-
anu. Abstract domains for automated reasoning about list-manipulating
programs with infinite data. In Viktor Kuncak and Andrey Rybalchenko,
editors, Verification, Model Checking, and Abstract Interpretation, VMCAI, vol-
ume 7148 of Lecture Notes in Computer Science, pages 1–22. Springer, 2012.
doi:10.1007/978-3-642-27940-9_1.

[172] JosselinGiet, Félix Ridoux, andXavier Rival. A product of shape and sequence
abstractions. In Manuel V. Hermenegildo and José F. Morales, editors, Static
Analysis Symposium, SAS, volume 14284 of Lecture Notes in Computer Science,
pages 310–342. Springer, 2023. doi:10.1007/978-3-031-44245-2_15.

[173] Matthieu Journault, Antoine Miné, and Abdelraouf Ouadjaout. An abstract
domain for trees with numeric relations. In Luís Caires, editor, European
Symposium on Programming, ESOP, volume 11423 of Lecture Notes in Computer
Science, pages 724–751. Springer, 2019. doi:10.1007/978-3-030-17184-1\
_26.

[174] Nurit Dor, Michael Rodeh, and Shmuel Sagiv. CSSV: towards a realistic tool
for statically detecting all buffer overflows in C. In Ron Cytron and Rajiv

https://doi.org/10.4230/LIPICS.ECOOP.2020.17
https://doi.org/10.4230/LIPICS.ECOOP.2020.17
https://doi.org/10.1007/978-3-642-03237-0_17
https://doi.org/10.1007/978-3-642-03237-0_17
https://tel.archives-ouvertes.fr/pastel-00000896
https://tel.archives-ouvertes.fr/pastel-00000896
https://doi.org/10.1145/1328438.1328469
https://doi.org/10.1007/978-3-642-27940-9_1
https://doi.org/10.1007/978-3-031-44245-2_15
https://doi.org/10.1007/978-3-030-17184-1_26
https://doi.org/10.1007/978-3-030-17184-1_26

198 BIBLIOGRAPHY

Gupta, editors,Programming LanguageDesign and Implementation, PLDI, pages
155–167. ACM, 2003. doi:10.1145/781131.781149.

[175] Tae-Hyoung Choi, Oukseh Lee, Hyunha Kim, and Kyung-Goo Doh. A prac-
tical string analyzer by the widening approach. In Naoki Kobayashi, ed-
itor, Asian Symposium of Programming Languages and Systems, APLAS, vol-
ume 4279 of Lecture Notes in Computer Science, pages 374–388. Springer, 2006.
doi:10.1007/11924661_23.

[176] Magnus Madsen and Esben Andreasen. String analysis for dynamic field
access. In Compiler Construction, CC, volume 8409 of Lecture Notes in Computer
Science, pages 197–217. Springer, 2014. doi:10.1007/978-3-642-54807-9\
_12.

[177] Changhee Park, Hyeonseung Im, and Sukyoung Ryu. Precise and scal-
able static analysis of jQuery using a regular expression domain. In Pro-
ceedings of the 12th Symposium on Dynamic Languages, DLS 2016, Amster-
dam, The Netherlands, November 1, 2016, pages 25–36. ACM, 2016. doi:
10.1145/2989225.2989228.

[178] Vincenzo Arceri, Isabella Mastroeni, and Sunyi Xu. Static analysis for EC-
MAScript string manipulation programs. Applied Sciences, 10(10):3525, 2020.

[179] Vincenzo Arceri, Mila Dalla Preda, Roberto Giacobazzi, and Isabella Mas-
troeni. SEA: string executability analysis by abstract interpretation. CoRR,
abs/1702.02406, 2017. arXiv:1702.02406.

[180] Luca Negrini, Vincenzo Arceri, Pietro Ferrara, and Agostino Cortesi. Twin-
ning automata and regular expressions for string static analysis. In Verifica-
tion,Model Checking, and Abstract Interpretation - 22nd International Conference,
VMCAI 2021, Copenhagen, Denmark, January 17-19, 2021, Proceedings, volume
12597 of Lecture Notes in Computer Science, pages 267–290. Springer, 2021.
doi:10.1007/978-3-030-67067-2_13.

[181] Vincenzo Arceri, Martina Olliaro, Agostino Cortesi, and Pietro Ferrara. Re-
lational string abstract domains. In Bernd Finkbeiner and Thomas Wies,
editors, Verification, Model Checking, and Abstract Interpretation, VMCAI, vol-
ume 13182 of Lecture Notes in Computer Science, pages 20–42. Springer, 2022.
doi:10.1007/978-3-030-94583-1_2.

https://doi.org/10.1145/781131.781149
https://doi.org/10.1007/11924661_23
https://doi.org/10.1007/978-3-642-54807-9_12
https://doi.org/10.1007/978-3-642-54807-9_12
https://doi.org/10.1145/2989225.2989228
https://doi.org/10.1145/2989225.2989228
http://arxiv.org/abs/1702.02406
https://doi.org/10.1007/978-3-030-67067-2_13
https://doi.org/10.1007/978-3-030-94583-1_2

BIBLIOGRAPHY 199

[182] Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent
Mauborgne, AntoineMiné,DavidMonniaux, andXavier Rival. Design and im-
plementation of a special-purpose static program analyzer for safety-critical
real-time embedded software. In The Essence of Computation, Complexity,
Analysis, Transformation. Essays Dedicated to Neil D. Jones [on occasion of his
60th birthday], volume 2566 of Lecture Notes in Computer Science, pages 85–108.
Springer, 2002. doi:10.1007/3-540-36377-7_5.

[183] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and
X. Rival. The Astrée analyzer. In European Symposium on Programming
ESOP, volume 3444 of Lecture Notes in Computer Science (LNCS), pages 21–
30. Springer, 2005. http://www-apr.lip6.fr/~mine/publi/esop05_astree.pdf.
doi:10.1007/978-3-540-31987-0_3.

[184] Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine
Miné, and Xavier Rival. Why does astrée scale up? Formal Methods Syst. Des.,
35(3):229–264, 2009. doi:10.1007/S10703-009-0089-6.

[185] Manuel Fähndrich and Francesco Logozzo. Static contract checking with
abstract interpretation. In Formal Verification of Object-Oriented Software,
FoVeOOS, volume 6528 of Lecture Notes in Computer Science, pages 10–30.
Springer, 2010. doi:10.1007/978-3-642-18070-5_2.

[186] David Bühler. Structuring an Abstract Interpreter through Value and State Ab-
stractions:EVA, an Evolved Value Analysis for Frama-C. (Structurer un interpréteur
abstrait au moyen d’abstractions de valeurs et d’états :Eva, une analyse de valeur
évoluée pour Frama-C). PhD thesis, University of Rennes 1, France, 2017. URL:
https://tel.archives-ouvertes.fr/tel-01664726.

[187] Sandrine Blazy, David Bühler, and Boris Yakobowski. Structuring abstract
interpreters through state and value abstractions. In Verification, Model
Checking, and Abstract Interpretation, VMCAI, volume 10145 of Lecture Notes
in Computer Science, pages 112–130. Springer, 2017. doi:10.1007/978-3-319-
52234-0_7.

[188] Guillaume Brat, Jorge A. Navas, Nija Shi, and Arnaud Venet. IKOS: a frame-
work for static analysis based on abstract interpretation. In Software Engineer-
ing and Formal Methods, SEFM, volume 8702 of Lecture Notes in Computer Sci-
ence, pages 271–277. Springer, 2014. doi:10.1007/978-3-319-10431-7_20.

https://doi.org/10.1007/3-540-36377-7_5
http://www-apr.lip6.fr/~mine/publi/esop05_astree.pdf
https://doi.org/10.1007/978-3-540-31987-0_3
https://doi.org/10.1007/S10703-009-0089-6
https://doi.org/10.1007/978-3-642-18070-5_2
https://tel.archives-ouvertes.fr/tel-01664726
https://doi.org/10.1007/978-3-319-52234-0_7
https://doi.org/10.1007/978-3-319-52234-0_7
https://doi.org/10.1007/978-3-319-10431-7_20

200 BIBLIOGRAPHY

[189] Chris Lattner and Vikram S. Adve. LLVM: A compilation framework
for lifelong program analysis & transformation. In Code Generation
and Optimization, CGO, pages 75–88. IEEE Computer Society, 2004. doi:
10.1109/CGO.2004.1281665.

[190] Arie Gurfinkel, Temesghen Kahsai, Anvesh Komuravelli, and Jorge A. Navas.
The seahorn verification framework. In Computer Aided Verification, CAV,
volume 9206 of Lecture Notes in Computer Science, pages 343–361. Springer,
2015. doi:10.1007/978-3-319-21690-4_20.

[191] DinoDistefano,Manuel Fähndrich, FrancescoLogozzo, andPeterW.O’Hearn.
Scaling static analyses at facebook. Commun. ACM, 62(8):62–70, 2019. doi:
10.1145/3338112.

[192] The Infer team. Infer: A static analyzer for Java, C, C++, and Objective-C,
2019. Accessed: 2023-12-04. URL: https://github.com/facebook/infer.

[193] Fausto Spoto. The julia static analyzer for java. In Static Analysis Symposium,
SAS, volume 9837 of Lecture Notes in Computer Science, pages 39–57. Springer,
2016. doi:10.1007/978-3-662-53413-7_3.

[194] Fausto Spoto, Elisa Burato, Michael D. Ernst, Pietro Ferrara, Alberto Lovato,
Damiano Macedonio, and Ciprian Spiridon. Static identification of injection
attacks in java. ACM Trans. Program. Lang. Syst., 41(3):18:1–18:58, 2019. doi:
10.1145/3332371.

[195] Pietro Ferrara, Luca Negrini, Vincenzo Arceri, and Agostino Cortesi. Static
analysis for dummies: experiencing lisa. In State Of the Art in ProgramAnalysis,
SOAP, pages 1–6. ACM, 2021. doi:10.1145/3460946.3464316.

[196] Luca Negrini, Pietro Ferrara, Vincenzo Arceri, and Agostino Cortesi. LiSA: a
generic framework formultilanguage static analysis. In Challenges of Software
Verification, pages 19–42. Springer, 2023.

[197] Luca Olivieri, Fabio Tagliaferro, Vincenzo Arceri, Marco Ruaro, Luca Negrini,
Agostino Cortesi, Pietro Ferrara, Fausto Spoto, and Enrico Talin. Ensuring
determinism in blockchain software with GoLiSA: an industrial experience
report. In State Of the Art in Program Analysis, SOAP, pages 23–29. ACM, 2022.
doi:10.1145/3520313.3534658.

[198] Abdelraouf Ouadjaout and Antoine Miné. A library modeling language for
the static analysis of C programs. In Static Analysis Symposium, SAS, volume

https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1007/978-3-319-21690-4_20
https://doi.org/10.1145/3338112
https://doi.org/10.1145/3338112
https://github.com/facebook/infer
https://doi.org/10.1007/978-3-662-53413-7_3
https://doi.org/10.1145/3332371
https://doi.org/10.1145/3332371
https://doi.org/10.1145/3460946.3464316
https://doi.org/10.1145/3520313.3534658

BIBLIOGRAPHY 201

12389 of Lecture Notes in Computer Science, pages 223–247. Springer, 2020.
doi:10.1007/978-3-030-65474-0_11.

[199] Raphaël Monat, Abdelraouf Ouadjaout, and Antoine Miné. A multilanguage
static analysis of python programs with native C extensions. In Static Analysis
Symposium, SAS, volume 12913 of Lecture Notes in Computer Science, pages
323–345. Springer, 2021. doi:10.1007/978-3-030-88806-0_16.

[200] B. Jeannet and A. Miné. Apron: A library of numerical abstract domains for
static analysis. In Computer Aided Verification, CAV, volume 5643 of Lecture
Notes in Computer Science (LNCS), pages 661–667. Springer, 2009. http://www-
apr.lip6.fr/~mine/publi/article-mine-jeannet-cav09.pdf. doi:10.1007/978-
3-642-02658-4_52.

[201] The Pysa static analyzer. URL: https://engineering.fb.com/2020/08/07/
security/pysa/.

[202] Li Li, Tegawendé F. Bissyandé, Mike Papadakis, Siegfried Rasthofer, Alexan-
dre Bartel, Damien Octeau, Jacques Klein, and Yves Le Traon. Static analysis
of android apps: a systematic literature review. Inf. Softw. Technol., 88:67–95,
2017. doi:10.1016/j.infsof.2017.04.001.

[203] Simon Holm Jensen, Anders Møller, and Peter Thiemann. Interprocedural
analysis with lazy propagation. In Static Analysis Symposium, SAS, volume
6337 of Lecture Notes in Computer Science, pages 320–339. Springer, 2010. doi:
10.1007/978-3-642-15769-1_20.

[204] Simon Holm Jensen, Magnus Madsen, and Anders Møller. Modeling the
HTMLDOM and browser API in static analysis of JavaScript web applications.
In Symposium on the Foundations of Software Engineering, SIGSOFT, pages
59–69. ACM, 2011. doi:10.1145/2025113.2025125.

[205] Simon Holm Jensen, Peter A. Jonsson, and Anders Møller. Remedying the
eval that men do. In International Symposium on Software Testing and Analysis,
ISSTA, pages 34–44. ACM, 2012. doi:10.1145/2338965.2336758.

[206] Erik Krogh Kristensen and Anders Møller. Reasonably-most-general clients
for javascript library analysis. In International Conference on Software Engineer-
ing, ICSE, pages 83–93. IEEE / ACM, 2019. doi:10.1109/ICSE.2019.00026.

[207] Jacques-Henri Jourdan, Vincent Laporte, Sandrine Blazy, Xavier Leroy, and
David Pichardie. A formally-verified C static analyzer. In Symposium on

https://doi.org/10.1007/978-3-030-65474-0_11
https://doi.org/10.1007/978-3-030-88806-0_16
http://www-apr.lip6.fr/~mine/publi/article-mine-jeannet-cav09.pdf
http://www-apr.lip6.fr/~mine/publi/article-mine-jeannet-cav09.pdf
https://doi.org/10.1007/978-3-642-02658-4_52
https://doi.org/10.1007/978-3-642-02658-4_52
https://engineering.fb.com/2020/08/07/security/pysa/
https://engineering.fb.com/2020/08/07/security/pysa/
https://doi.org/10.1016/j.infsof.2017.04.001
https://doi.org/10.1007/978-3-642-15769-1_20
https://doi.org/10.1007/978-3-642-15769-1_20
https://doi.org/10.1145/2025113.2025125
https://doi.org/10.1145/2338965.2336758
https://doi.org/10.1109/ICSE.2019.00026

202 BIBLIOGRAPHY

Principles of Programming Languages, POPL, pages 247–259. ACM, 2015. doi:
10.1145/2676726.2676966.

[208] Sylvie Boldo, Jacques-Henri Jourdan, Xavier Leroy, andGuillaumeMelquiond.
A formally-verified C compiler supporting floating-point arithmetic. In
Symposium on Computer Arithmetic, ARITH, pages 107–115. IEEE Computer
Society, 2013. doi:10.1109/ARITH.2013.30.

[209] Jacques-Henri Jourdan. Verasco: a Formally Verified C Static Analyzer. (Verasco:
un analyseur statique pour C formellement vérifié). PhD thesis, Paris Diderot
University, France, 2016. URL: https://tel.archives-ouvertes.fr/tel-01327023.

[210] Sandrine Blazy, Vincent Laporte, and David Pichardie. Verified abstract
interpretation techniques for disassembling low-level self-modifying code. J.
Autom. Reason., 56(3):283–308, 2016. doi:10.1007/S10817-015-9359-8.

[211] Xavier Leroy. Formal verification of a realistic compiler. Commun. ACM,
52(7):107–115, 2009. doi:10.1145/1538788.1538814.

[212] 2023 CWE top 25most dangerous software weaknesses, 2023. Accessed: 2023-
08-30. URL: https://cwe.mitre.org/top25/archive/2023/2023_top25_list.html.

[213] Guillaume Girol, Benjamin Farinier, and Sébastien Bardin. Not all bugs are
created equal, but robust reachability can tell the difference. In Computer
Aided Verification, CAV, volume 12759, pages 669–693. Springer, 2021. doi:
10.1007/978-3-030-81685-8_32.

[214] The Infer static analyzer. URL: https://fbinfer.com/.

[215] Isabella Mastroeni and Michele Pasqua. Hyperhierarchy of semantics - A
formal framework for hyperproperties verification. In Static Analysis Sym-
posium, SAS, volume 10422, pages 232–252, 2017. doi:10.1007/978-3-319-
66706-5_12.

[216] Isabella Mastroeni and Michele Pasqua. Verifying bounded subset-closed
hyperproperties. In Static Analysis Symposium, SAS, volume 11002, pages
263–283, 2018. doi:10.1007/978-3-319-99725-4_17.

[217] Isabella Mastroeni and Michele Pasqua. Statically analyzing information
flows: an abstract interpretation-based hyperanalysis for non-interference.
In Symposium on Applied Computing, SAC, pages 2215–2223, 2019. doi:
10.1145/3297280.3297498.

https://doi.org/10.1145/2676726.2676966
https://doi.org/10.1145/2676726.2676966
https://doi.org/10.1109/ARITH.2013.30
https://tel.archives-ouvertes.fr/tel-01327023
https://doi.org/10.1007/S10817-015-9359-8
https://doi.org/10.1145/1538788.1538814
https://cwe.mitre.org/top25/archive/2023/2023_top25_list.html
https://doi.org/10.1007/978-3-030-81685-8_32
https://doi.org/10.1007/978-3-030-81685-8_32
https://fbinfer.com/
https://doi.org/10.1007/978-3-319-66706-5_12
https://doi.org/10.1007/978-3-319-66706-5_12
https://doi.org/10.1007/978-3-319-99725-4_17
https://doi.org/10.1145/3297280.3297498
https://doi.org/10.1145/3297280.3297498

BIBLIOGRAPHY 203

[218] Caterina Urban and Peter Müller. An abstract interpretation framework for
input data usage. In European Symposium on Programming, ESOP, volume
10801, pages 683–710, 2018. doi:10.1007/978-3-319-89884-1_24.

[219] Mounir Assaf, David A. Naumann, Julien Signoles, Eric Totel, and Frédéric
Tronel. Hypercollecting semantics and its application to static analysis
of information flow. In Principles of Programming Languages, POPL, 2017.
doi:10.1145/3009837.3009889.

[220] Peter Ørbæk and Jens Palsberg. Trust in the lambda-calculus. J. Funct.
Program., 7(6):557–591, 1997. doi:10.1017/s0956796897002906.

[221] Andrew C. Myers and Barbara Liskov. A decentralizedmodel for information
flow control. In Symposium onOperating System Principles, SOSP, pages 129–142.
ACM, 1997. doi:10.1145/268998.266669.

[222] Dennis M. Volpano, Cynthia E. Irvine, and Geoffrey Smith. A sound type
system for secure flow analysis. Journal of Computer Security, 4(2/3):167–188,
1996. doi:10.3233/JCS-1996-42-304.

[223] Nevin Heintze and Jon G. Riecke. The slam calculus: Programming with
secrecy and integrity. In Principles of Programming Languages, POPL, pages
365–377. ACM, 1998. doi:10.1145/268946.268976.

[224] Geoffrey Smith and Dennis M. Volpano. Secure information flow in a multi-
threaded imperative language. In Principles of Programming Languages, POPL,
pages 355–364. ACM, 1998. doi:10.1145/268946.268975.

[225] Dennis M. Volpano and Geoffrey Smith. Probabilistic noninterference in a
concurrent language. J. Comput. Secur., 7(1), 1999. doi:10.3233/jcs-1999-
72-305.

[226] Johan Agat. Transforming out timing leaks. In Principles of Programming
Languages, POPL, pages 40–53. ACM, 2000. doi:10.1145/325694.325702.

[227] Andrei Sabelfeld and David Sands. Probabilistic noninterference for multi-
threaded programs. In Computer Security Foundations Workshop, CSFW, pages
200–214. IEEE Computer Society, 2000. doi:10.1109/CSFW.2000.856937.

[228] Steve Zdancewic and Andrew C. Myers. Secure information flow and CPS. In
European Symposium on Programming, ESOP, volume 2028 of Lecture Notes in
Computer Science, pages 46–61. Springer, 2001. doi:10.1007/3-540-45309-
1_4.

https://doi.org/10.1007/978-3-319-89884-1_24
https://doi.org/10.1145/3009837.3009889
https://doi.org/10.1017/s0956796897002906
https://doi.org/10.1145/268998.266669
https://doi.org/10.3233/JCS-1996-42-304
https://doi.org/10.1145/268946.268976
https://doi.org/10.1145/268946.268975
https://doi.org/10.3233/jcs-1999-72-305
https://doi.org/10.3233/jcs-1999-72-305
https://doi.org/10.1145/325694.325702
https://doi.org/10.1109/CSFW.2000.856937
https://doi.org/10.1007/3-540-45309-1_4
https://doi.org/10.1007/3-540-45309-1_4

204 BIBLIOGRAPHY

[229] Anindya Banerjee and David A. Naumann. Secure information flow and
pointer confinement in a java-like language. In Computer Security Foun-
dations Workshop CSFW, page 253. IEEE Computer Society, 2002. doi:
10.1109/CSFW.2002.1021820.

[230] François Pottier and Vincent Simonet. Information flow inference
for ML. ACM Trans. Program. Lang. Syst., 25(1):117–158, 2003. doi:
10.1145/596980.596983.

[231] Torben Amtoft and Anindya Banerjee. Information flow analysis in logical
form. In Roberto Giacobazzi, editor, Static Analysis Symposium, SAS, volume
3148 of Lecture Notes in Computer Science, pages 100–115. Springer, 2004. doi:
10.1007/978-3-540-27864-1_10.

[232] Roberto Giacobazzi and Isabella Mastroeni. Abstract non-interference: pa-
rameterizing non-interference by abstract interpretation. In Neil D. Jones
and Xavier Leroy, editors, Principles of Programming Languages, POPL, pages
186–197. ACM, 2004. doi:10.1145/964001.964017.

[233] Isabella Mastroeni. On the rôle of abstract non-interference in language-
based security. In Kwangkeun Yi, editor, Programming Languages and Systems,
Third Asian Symposium, APLAS 2005, Tsukuba, Japan, November 2-5, 2005,
Proceedings, volume 3780 of Lecture Notes in Computer Science, pages 418–433.
Springer, 2005. doi:10.1007/11575467_27.

[234] Roberto Giacobazzi and Isabella Mastroeni. Generalized abstract non-
interference: Abstract secure information-flow analysis for automata. In
Vladimir Gorodetsky, Igor V. Kotenko, and Victor A. Skormin, editors,Work-
shop on Mathematical Methods, Models, and Architectures for Computer Network
Security, MMM-ACNS, volume 3685 of Lecture Notes in Computer Science, pages
221–234. Springer, 2005. doi:10.1007/11560326_17.

[235] Roberto Giacobazzi and Isabella Mastroeni. Adjoining classified and unclas-
sified information by abstract interpretation. J. Comput. Secur., 18(5):751–797,
2010. doi:10.3233/JCS-2009-0382.

[236] Roberto Giacobazzi and Isabella Mastroeni. A proof system for ab-
stract non-interference. J. Log. Comput., 20(2):449–479, 2010. doi:
10.1093/LOGCOM/EXP053.

https://doi.org/10.1109/CSFW.2002.1021820
https://doi.org/10.1109/CSFW.2002.1021820
https://doi.org/10.1145/596980.596983
https://doi.org/10.1145/596980.596983
https://doi.org/10.1007/978-3-540-27864-1_10
https://doi.org/10.1007/978-3-540-27864-1_10
https://doi.org/10.1145/964001.964017
https://doi.org/10.1007/11575467_27
https://doi.org/10.1007/11560326_17
https://doi.org/10.3233/JCS-2009-0382
https://doi.org/10.1093/LOGCOM/EXP053
https://doi.org/10.1093/LOGCOM/EXP053

BIBLIOGRAPHY 205

[237] IsabellaMastroeni and Anindya Banerjee. Modelling declassification policies
using abstract domain completeness. Math. Struct. Comput. Sci., 21(6):1253–
1299, 2011. doi:10.1017/S096012951100020X.

[238] Roberto Giacobazzi and Isabella Mastroeni. Abstract non-interference: A
unifying framework for weakening information-flow. ACM Trans. Priv. Secur.,
21(2):9:1–9:31, 2018. doi:10.1145/3175660.

[239] Marc Éluard and Thomas P. Jensen. Secure object flow analysis for Java Card.
In Peter Honeyman, editor, Smart Card Research and Advanced Application
Conference, CARDIS, pages 97–110. USENIX, 2002. URL: http://www.usenix.
org/publications/library/proceedings/cardis02/eluard.html.

[240] Zhiqun Chen. Java Card technology for smart cards: architecture and program-
mer’s guide. Addison-Wesley Professional, 2000.

[241] David Cachera, Thomas P. Jensen, David Pichardie, and Vlad Rusu. Extract-
ing a data flow analyser in constructive logic. In David A. Schmidt, editor,
European Symposium on Programming, ESOP, volume 2986 of Lecture Notes in
Computer Science, pages 385–400. Springer, 2004. doi:10.1007/978-3-540-
24725-8_27.

[242] Frédéric Besson, Thomas P. Jensen, and Pierre Vittet. SawjaCard: A static
analysis tool for certifying Java Card applications. InMarkusMüller-Olm and
Helmut Seidl, editors, Static Analysis Symposium, SAS, volume 8723 of Lecture
Notes in Computer Science, pages 51–67. Springer, 2014. doi:10.1007/978-3-
319-10936-7_4.

[243] Gilles Barthe, Pedro R. D’Argenio, and Tamara Rezk. Secure information flow
by self-composition. Mathematical Structures in Computer Science, 21(6):1207–
1252, 2011. doi:10.1017/S0960129511000193.

[244] Tachio Terauchi and Alexander Aiken. Secure information flow as a safety
problem. In Static Analysis Symposium, SAS, volume 3672 of Lecture Notes in
Computer Science, pages 352–367, 2005. doi:10.1007/11547662_24.

[245] Timos Antonopoulos, Paul Gazzillo, Michael Hicks, Eric Koskinen, Tachio
Terauchi, and Shiyi Wei. Decomposition instead of self-composition for
proving the absence of timing channels. In Conference on Programming
Language Design and Implementation, PLDI, pages 362–375. ACM, 2017. doi:
10.1145/3062341.3062378.

https://doi.org/10.1017/S096012951100020X
https://doi.org/10.1145/3175660
http://www.usenix.org/publications/library/proceedings/cardis02/eluard.html
http://www.usenix.org/publications/library/proceedings/cardis02/eluard.html
https://doi.org/10.1007/978-3-540-24725-8_27
https://doi.org/10.1007/978-3-540-24725-8_27
https://doi.org/10.1007/978-3-319-10936-7_4
https://doi.org/10.1007/978-3-319-10936-7_4
https://doi.org/10.1017/S0960129511000193
https://doi.org/10.1007/11547662_24
https://doi.org/10.1145/3062341.3062378
https://doi.org/10.1145/3062341.3062378

206 BIBLIOGRAPHY

[246] Bernd Finkbeiner, Markus N. Rabe, and César Sánchez. Algorithms for
model checking hyperltl and hyperctl ˆ*. In Computer Aided Verification, CAV,
volume 9206 of Lecture Notes in Computer Science, pages 30–48. Springer, 2015.
doi:10.1007/978-3-319-21690-4_3.

[247] Michael R. Clarkson, Bernd Finkbeiner,Masoud Koleini, Kristopher K.Micin-
ski,MarkusN. Rabe, and César Sánchez. Temporal logics for hyperproperties.
In Principles of Security and Trust, POST, volume 8414 of Lecture Notes in Com-
puter Science, pages 265–284. Springer, 2014. doi:10.1007/978-3-642-54792-
8_15.

[248] Norine Coenen, Bernd Finkbeiner, César Sánchez, and Leander Tentrup.
Verifying hyperliveness. In Computer Aided Verification, CAV, volume 11561
of Lecture Notes in Computer Science, pages 121–139. Springer, 2019. doi:
10.1007/978-3-030-25540-4_7.

[249] Bernd Finkbeiner, Christopher Hahn, and Hazem Torfah. Model checking
quantitative hyperproperties. In Computer Aided Verification, CAV, volume
10981 of Lecture Notes in Computer Science, pages 144–163. Springer, 2018. doi:
10.1007/978-3-319-96145-3_8.

[250] Tzu-Han Hsu, César Sánchez, and Borzoo Bonakdarpour. Bounded model
checking for hyperproperties. In Tools and Algorithms for the Construction and
Analysis of Systems, TACAS, volume 12651 of Lecture Notes in Computer Science,
pages 94–112. Springer, 2021. doi:10.1007/978-3-030-72016-2_6.

[251] Raven Beutner and Bernd Finkbeiner. Autohyper: Explicit-statemodel check-
ing for hyperltl. In Tools and Algorithms for the Construction and Analysis of
Systems, TACAS, volume 13993 of Lecture Notes in Computer Science, pages
145–163. Springer, 2023. doi:10.1007/978-3-031-30823-9_8.

[252] Patrick Cousot. Abstract semantic dependency. In Static Analysis Symposium,
SAS, volume 11822, pages 389–410. Springer, 2019. doi:10.1007/978-3-030-
32304-2_19.

[253] Ignacio Tiraboschi, Tamara Rezk, and Xavier Rival. Sound symbolic execu-
tion via abstract interpretation and its application to security. In Verification,
Model Checking, and Abstract Interpretation, VMCAI, volume 13881 of Lecture
Notes in Computer Science, pages 267–295. Springer, 2023. doi:10.1007/978-
3-031-24950-1_13.

https://doi.org/10.1007/978-3-319-21690-4_3
https://doi.org/10.1007/978-3-642-54792-8_15
https://doi.org/10.1007/978-3-642-54792-8_15
https://doi.org/10.1007/978-3-030-25540-4_7
https://doi.org/10.1007/978-3-030-25540-4_7
https://doi.org/10.1007/978-3-319-96145-3_8
https://doi.org/10.1007/978-3-319-96145-3_8
https://doi.org/10.1007/978-3-030-72016-2_6
https://doi.org/10.1007/978-3-031-30823-9_8
https://doi.org/10.1007/978-3-030-32304-2_19
https://doi.org/10.1007/978-3-030-32304-2_19
https://doi.org/10.1007/978-3-031-24950-1_13
https://doi.org/10.1007/978-3-031-24950-1_13

BIBLIOGRAPHY 207

[254] Chaoqiang Deng and Patrick Cousot. Responsibility analysis by abstract
interpretation. In Bor-Yuh Evan Chang, editor, Static Analysis Symposium, SAS,
volume 11822 of Lecture Notes in Computer Science, pages 368–388. Springer,
2019. doi:10.1007/978-3-030-32304-2_18.

[255] Chaoqiang Deng. Responsibility Analysis by Abstract Interpretation. PhD thesis,
New York University, USA, 2021. URL: https://cs.nyu.edu/media/publications/
NYU_dissertation_Deng.pdf.

[256] Chaoqiang Deng and Patrick Cousot. The systematic design of responsibility
analysis by abstract interpretation. ACMTrans. Program. Lang. Syst., 44(1):3:1–
3:90, 2022. doi:10.1145/3484938.

[257] David Bühler, Pascal Cuoq, Boris Yakobowski, Matthieu Lemerre, André
Maroneze, Valentin Perrelle, and Virgile Prevosto. The Eva plug-in. CEA List,
November 2023. Version 28.0. URL: https://frama-c.com/download/frama-c-
eva-manual.pdf.

[258] Mark D. Weiser. Program slicing. IEEE Trans. Software Eng., 10(4):352–357,
1984. doi:10.1109/TSE.1984.5010248.

[259] Frank Tip. A survey of program slicing techniques. J. Program. Lang., 3(3),
1995. URL: http://compscinet.dcs.kcl.ac.uk/JP/jp030301.abs.html.

[260] David W. Binkley and Keith Brian Gallagher. Program slicing. Adv. Comput.,
43:1–50, 1996. doi:10.1016/S0065-2458(08)60641-5.

[261] Andrea De Lucia. Program slicing: Methods and applications. InWorkshop on
Source Code Analysis andManipulation (SCAM), pages 144–151. IEEE Computer
Society, 2001. doi:10.1109/SCAM.2001.972675.

[262] Keith Brian Gallagher and James R. Lyle. Using program slicing in soft-
ware maintenance. IEEE Trans. Software Eng., 17(8):751–761, 1991. doi:
10.1109/32.83912.

[263] Gerardo Canfora, Aniello Cimitile, and Andrea De Lucia. Conditioned pro-
gram slicing. Inf. Softw. Technol., 40(11-12):595–607, 1998. doi:10.1016/S0950-
5849(98)00086-X.

[264] John Field, G. Ramalingam, and Frank Tip. Parametric program slicing. In
Ron K. Cytron and Peter Lee, editors, Principles of Programming Languages,
POPL, pages 379–392. ACM Press, 1995. doi:10.1145/199448.199534.

https://doi.org/10.1007/978-3-030-32304-2_18
https://cs.nyu.edu/media/publications/NYU_dissertation_Deng.pdf
https://cs.nyu.edu/media/publications/NYU_dissertation_Deng.pdf
https://doi.org/10.1145/3484938
https://frama-c.com/download/frama-c-eva-manual.pdf
https://frama-c.com/download/frama-c-eva-manual.pdf
https://doi.org/10.1109/TSE.1984.5010248
http://compscinet.dcs.kcl.ac.uk/JP/jp030301.abs.html
https://doi.org/10.1016/S0065-2458(08)60641-5
https://doi.org/10.1109/SCAM.2001.972675
https://doi.org/10.1109/32.83912
https://doi.org/10.1109/32.83912
https://doi.org/10.1016/S0950-5849(98)00086-X
https://doi.org/10.1016/S0950-5849(98)00086-X
https://doi.org/10.1145/199448.199534

208 BIBLIOGRAPHY

[265] Aniello Cimitile, Andrea De Lucia, and Malcolm Munro. A specification
driven slicing process for identifying reusable functions. J. Softw. Mainte-
nance Res. Pract., 8(3):145–178, 1996.

[266] Susan Horwitz, Thomas W. Reps, and David W. Binkley. Interprocedural
slicing using dependence graphs. ACM Trans. Program. Lang. Syst., 12(1):26–
60, 1990. doi:10.1145/77606.77608.

[267] Xavier Rival. Understanding the origin of alarms in astrée. In Chris
Hankin and Igor Siveroni, editors, Static Analysis Symposium, SAS, volume
3672 of Lecture Notes in Computer Science, pages 303–319. Springer, 2005.
doi:10.1007/11547662_21.

[268] Torben Amtoft and Anindya Banerjee. A logic for information flow analysis
with an application to forward slicing of simple imperative programs. Sci.
Comput. Program., 64(1):3–28, 2007. doi:10.1016/J.SCICO.2006.03.002.

[269] Hyoung Seok Hong, Insup Lee, and Oleg Sokolsky. Abstract slicing: A new
approach to program slicing based on abstract interpretation and model
checking. In Workshop on Source Code Analysis and Manipulation, (SCAM),
pages 25–34. IEEE Computer Society, 2005. doi:10.1109/SCAM.2005.2.

[270] Isabella Mastroeni and Damiano Zanardini. Abstract program slicing: An ab-
stract interpretation-based approach to program slicing. ACM Trans. Comput.
Log., 18(1):7:1–7:58, 2017. doi:10.1145/3029052.

[271] Isabella Mastroeni and Damiano Zanardini. Data dependencies and program
slicing: from syntax to abstract semantics. In Robert Glück andOege deMoor,
editors, Partial Evaluation and Semantics-based Program Manipulation, PEPM,
pages 125–134. ACM, 2008. doi:10.1145/1328408.1328428.

[272] Damiano Zanardini. The semantics of abstract program slicing. InWork-
shop on Source Code Analysis and Manipulation (SCAM), pages 89–98. IEEE
Computer Society, 2008. doi:10.1109/SCAM.2008.19.

[273] Isabella Mastroeni and Durica Nikolic. Abstract program slicing: From
theory towards an implementation. In Jin Song Dong and Huibiao Zhu,
editors, International Conference on Formal Engineering Methods, ICFEM, vol-
ume 6447 of Lecture Notes in Computer Science, pages 452–467. Springer, 2010.
doi:10.1007/978-3-642-16901-4_30.

https://doi.org/10.1145/77606.77608
https://doi.org/10.1007/11547662_21
https://doi.org/10.1016/J.SCICO.2006.03.002
https://doi.org/10.1109/SCAM.2005.2
https://doi.org/10.1145/3029052
https://doi.org/10.1145/1328408.1328428
https://doi.org/10.1109/SCAM.2008.19
https://doi.org/10.1007/978-3-642-16901-4_30

BIBLIOGRAPHY 209

[274] Yanis Sellami, Guillaume Girol, Frédéric Recoules, Damien Couroussé, and
Sébastien Bardin. Inference of robust reachability constraints. 8(POPL):2731–
2760, 2024. doi:10.1145/3632933.

[275] AdnanAziz, KumudSanwal, Vigyan Singhal, andRobert K. Brayton. Verifying
continuous time markov chains. In Computer Aided Verification, CAV, volume
1102 of Lecture Notes in Computer Science, pages 269–276. Springer, 1996. doi:
10.1007/3-540-61474-5_75.

[276] Hans Hansson and Bengt Jonsson. A logic for reasoning about time and relia-
bility. Formal Aspects Comput., 6(5):512–535, 1994. doi:10.1007/BF01211866.

[277] Patrick Cousot and Michael Monerau. Probabilistic abstract interpretation.
In European Symposium on Programming, ESOP, volume 7211 of Lecture Notes
in Computer Science, pages 169–193. Springer, 2012. doi:10.1007/978-3-642-
28869-2_9.

[278] DavidMonniaux. Abstract interpretation of probabilistic semantics. In Static
Analysis Symposium, SAS, volume 1824 of Lecture Notes in Computer Science,
pages 322–339. Springer, 2000. doi:10.1007/978-3-540-45099-3_17.

[279] David Monniaux. An abstract analysis of the probabilistic termination of
programs. In Static Analysis Symposium, SAS, volume 2126 of Lecture Notes in
Computer Science, pages 111–126. Springer, 2001. doi:10.1007/3-540-47764-
0_7.

[280] Alessandra Di Pierro and Herbert Wiklicky. Probabilistic abstract interpreta-
tion: From trace semantics to dtmc’s and linear regression. In Semantics, Log-
ics, and Calculi - Essays Dedicated to Hanne Riis Nielson and Flemming Nielson on
the Occasion of Their 60th Birthdays, volume 9560 of Lecture Notes in Computer
Science, pages 111–139. Springer, 2016. doi:10.1007/978-3-319-27810-0_6.

[281] Sébastien Bardin and Guillaume Girol. A quantitative flavour of ro-
bust reachability. CoRR, abs/2212.05244, 2022. arXiv:2212.05244, doi:
10.48550/arXiv.2212.05244.

[282] Jonathan Heusser and Pasquale Malacaria. Quantifying information leaks in
software. In Annual Computer Security Applications Conference, ACSAC, pages
261–269. ACM, 2010. doi:10.1145/1920261.1920300.

[283] A. Ouadjaout and A.Miné. A librarymodeling language for the static analysis
of C programs. In Static Analysis Symposium, SAS, volume 12389 of Lecture

https://doi.org/10.1145/3632933
https://doi.org/10.1007/3-540-61474-5_75
https://doi.org/10.1007/3-540-61474-5_75
https://doi.org/10.1007/BF01211866
https://doi.org/10.1007/978-3-642-28869-2_9
https://doi.org/10.1007/978-3-642-28869-2_9
https://doi.org/10.1007/978-3-540-45099-3_17
https://doi.org/10.1007/3-540-47764-0_7
https://doi.org/10.1007/3-540-47764-0_7
https://doi.org/10.1007/978-3-319-27810-0_6
http://arxiv.org/abs/2212.05244
https://doi.org/10.48550/arXiv.2212.05244
https://doi.org/10.48550/arXiv.2212.05244
https://doi.org/10.1145/1920261.1920300

210 BIBLIOGRAPHY

Notes in Computer Science (LNCS), pages 223–246. Springer, 2020. http://www-
apr.lip6.fr/~mine/publi/ouadjaout-al-sas20.pdf. doi:10.1007/978-3-030-
65474-0_11.

[284] Common weakness enumeration (CWE). Accessed: 2023-08-30. URL: https:
//cwe.mitre.org/.

http://www-apr.lip6.fr/~mine/publi/ouadjaout-al-sas20.pdf
http://www-apr.lip6.fr/~mine/publi/ouadjaout-al-sas20.pdf
https://doi.org/10.1007/978-3-030-65474-0_11
https://doi.org/10.1007/978-3-030-65474-0_11
https://cwe.mitre.org/
https://cwe.mitre.org/

Appendix

211

Appendix A

Proofs

Proofs for Chapter 4

We define the frontier of a state (R,w) as the (possibly empty) ordered sequence
of states that are reached after matching the first character of the word w. More
formally, the frontier front : Sr → S∗r is the sequence of states

front((R, aw)) ≜ (refresh(R1),w), . . . , (refresh(Rn),w)

Where JaR1K(aw), . . . , JaRnK(aw) is the (possibly empty) ordered sequence of sub-
trees of JRK(aw) such that the next action is matching the first character a. For
example, front(((a | a)∗, ab)) = ((a | a)∗, b), ((a | a)∗, b) (see Figure 4.2B). We
define front((R, ϵ)) as the empty sequence. We abuse the notation and we gener-
alize the frontier to sequences of states: front((R1,w), . . . , (Rn,w)) is the ordered
concatenation of the frontiers front((R1,w)), . . . , front((Rn,w)).

Proof (Lemma 4.1)
Letm be the least integer such that frontm((R,w)) is empty. Since the number
of nodes between the frontiers does not depend on the length of the input
word but only on the regular expression, h = Θ(m). Let n ≤ m, and observe
that the words in the states of frontn((R,w)) have exactly |w| – n characters.
By definition of front, when n = |w| the next frontier must be empty. This
implies thatm cannot be greater than |w|, so that h = O(|w|).

213

214 APPENDIX A. PROOFS

We now prove the correctness of Algorithm 2, namely we show L(M2(R)) =
M2(R) (see Thm. 4.1). Since M2 immediately calls M2-rec, we actually prove that
L(M2-rec(R, ∅)) = M2(R). First, we introduce some preliminary definitions, and
then we formalize the correctness theorem for M2-rec. Then, we proceed to prove
by induction that M2-rec is correct. Finally, we observe that the correctness of M2
is a corollary of the correctness of M2-rec.

Before proving the correctness of M2, we need some preliminary definitions.
We define the set of reachable regular expressions rch : RT → ℘(RT) as follows.

rch(R) ≜ {R′ ∈ RT | ∃w1,w2 ∈ Σ∗,∃t ∈ T((R,w1w2)) : ℓ(t) = (R′,w2) }

Let R1,R2 ∈ RT,w1,w2 ∈ Σ∗. If ∃t ∈ T((R1,w1w2)) such that (R2,w2) = ℓ(t), then
we write (R1,w1w2) −→∗ (R2,w2). We need to define when a regular expression
R ∈ RT is valid, namely when it is possible to obtain it by following a series
of transitions from an initial expression in R. We say that R ∈ RT is valid iff
∃R1 ∈ R,w1,w2 ∈ Σ∗ such that (R1,w1w2) −→∗ (R,w2). Consider as example ab∗:
there is no regex in R that can produce a concatenated with b∗, so that ab∗ is not
valid.

Let S be a nonempty set of regular expressions such that ∀R1,R2 ∈ S if R1 ̸= R2,
then |R1| ̸= |R2| (where |R| is the number of constructors in the expression). We
extract the longest element of S with the function L : ℘(RT) → RT defined as
L(S) ≜ argmaxR∈S |R|. Let R′ ∈ RT,R = R1 · · ·Rn ∈ RT where for all i ∈ [1 . . .n],
Ri is not a concatenation. We define a function to determine whether a regular
expression is a suffix of another modulo ∗. suff : RT × RT → B is defined as
suff(R′,R1 · · ·Rn) = tt iff ∃j ∈ [1 . . . n] such that refresh(R′) = refresh(Rj+1 . . .Rn).
For example, suff(a∗a, aa∗a) = tt. We say that a set S is a valid set of expansion of
nested stars if: (1) ∀R ∈ S,∃R1,R2 ∈ RT such that R = R∗1R2; (2) ∀R1,R2 ∈ S such
that R1 ̸= R2 it holds |R1| ̸= |R2|; (3) ∀R ∈ S \ {L(S)} : suff(R, L(S)). An example of a
valid set of expansion of nested stars is { (a∗)∗, a∗(a∗)∗ }.

Let R1,R2 ∈ RT. If R1 = R2, then we defineM
R2
2 : R → Σ∗ asMR2

2 (R1) ≜ ∅. If
R1 ̸= R2,M

R2
2 (R1) is defined as follows.

M
R2
2 (R1) ≜ {w1w2 | w1 ∈ Σ+,w2 ∈ Σ∗,∃t1, t2 ∈ T((R1,w1w2)) :

t1 ̸= t2 ∧ ℓ(t1) = ℓ(t2) = (R2,w2) ∧ w2 ∈ L(R2) }

215

The words inM
R2
2 (R1) are those that can reach R2 in at least two different traces

from R1, and then can be matched from R2.
We now formalize the correctness of M2-rec. We define a precondition for

M2-rec, and then we give a postcondition. The correctness theorem, namely
Thm. A.1, states that the precondition implies the postcondition. Let R ∈ RT,E ∈
℘(RT).

Precondition

1. R is valid

2. E is a valid set of expansion of nested stars

3. ∀Ri ∈ E it holds that suff(Ri,R)

The precondition asserts that the actual arguments of the calls to M2-rec are con-
sistent: it forbids calling the function with an arbitrary set of regular expressions
as argument E. In particular, the second and the third conditions together ensure
that E is obtained by expanding the stars in R. This is always verified if M2-rec is
initially invoked with E set to ∅. Observe that the precondition trivially holds for
M2-rec(R, ∅) if R ∈ R. Furthermore, if R ∈ E, then R = L(E).

Postcondition

• If E = ∅, then L(M2-rec(R,E)) =M2(R);

• If E ̸= ∅, thenM
L(E)
2 (R) ⊆ L(M2-rec(R,E)) ⊆M2(R).

The first case in the postcondition specifies that if E is empty, then the language
recognized by M2-rec(R,E) is exactlyM2(R). The second condition is more inter-
esting, as it corresponds to the case in which E is not empty, namely the algorithm
is expanding the body of a star. In this case, the function returns an overapproxi-
mation of the words that have a nonempty prefix that is matched in at least two
different traces and can then reach L(E), which is the star that the algorithm is
expanding.

Theorem A.1 (Correctness of M2-rec)
If the precondition holds for M2-rec, then the postcondition holds.

216 APPENDIX A. PROOFS

Thm. A.1 formalizes that if M2-rec is called with correct parameters, then it
computesM2. In case the algorithm is expanding a star (that is, E ̸= ∅), it computes
the language of words that have a nonempty prefix that is matched in at least two
different traces and can then reach the star.

Observe that if R ∈ R, the precondition holds for M2-rec(R, ∅). This implies
that we can apply the correctness theorem and obtain that (by the second case in
the postcondition) L(M2-rec(R, ∅)) =M2(R). As mentioned at the beginning of this
Section, this is equivalent to L(M2(R)) =M2(R), which is the statement of Thm. 4.1.
In Corollary A.1 we formalize that the correctness of M2 is a corollary of Thm. A.1.

We prove that the precondition implies the postcondition by induction on
the set of actual arguments that will be used in the subcalls of M2-rec. First, we
formally define this set. Given the call M2-rec(R,E), we can associate to it the set
of pairs A(R,E) such that for each (R1,E1) ∈ A(R,E) it holds (1) M2-rec(R1,E1) is
called in a subcall of M2-rec(R,E); (2) the control flow reaches line 6 (that is,R1 has
not been expanded yet). A(R,E) is the set of actual arguments that will be used in
the subcalls of M2-rec(R,E). It can be proved that for each R ∈ RT,E ∈ ℘(RT) that
respect the precondition, it holds that (R,E) /∈ A(R,E), namely the configuration
(R,E) will never be expanded again in any subcall of M2-rec(R,E). This is because
the algorithm keeps track, with the formal parameter E, of stars that have already
been analyzed, and as soon as a regular expression that has a star as the first
construct in the concatenation is encountered for the second time, the function
terminates at line 5, never reaching line 6.

Furthermore, we observe that A(R,E) is a finite set. This is because for each
(R1,E1) ∈ A(R,E) it holds thatR1 ∈ rch(R) (since the algorithm explores all regular
expressions that can be expanded during the concrete execution), and rch(R)
is finite. The finiteness of A(R,E) and the fact that (R,E) /∈ A(R,E) imply the
termination of the algorithm and show that the induction is well-founded.

Proof (Thm. A.1)
We prove by induction on A(R,E) that the precondition always implies the
postcondition.

217

Base Case (A(R,E) = ∅)

If A(R,E) = ∅, then there are no subcalls to M2-rec. There are only three
possible cases.

1. (regex-head(R), regex-tail(R)) = (ϵ, ϵ). Then, the execution reaches
line 8 and⊥r is correctly returned, since no word in Σ+ is matched in two
different traces from ϵ.

2. (regex-head(R), regex-tail(R)) = (R∗1 ,R2). Then, similarly to the previ-
ous case, the execution reaches line 8 and ⊥r is returned, since no word
can be matched if the first constructor in the concatenation is ∗.

3. R ∈ E. Then, by the second and third conditions in the precondition it
must be that R = L(E). By definition, MR

2 (R) = ∅, and we conclude by
observing that we correctly return⊥r at line 5.

Inductive Case (A(R,E) ̸= ∅), E = ∅

If A(R,E) ̸= ∅, then we are in the inductive case and there are subcalls to
M2-rec. We first consider the subcase in which E = ∅, that is the algorithm
is not expanding any star. We show that L(M2-rec(R,E)) = M2(R) in three
different cases that depend on R.

1. (regex-head(R), regex-tail(R)) = (a,R1). In this case we return
a · M2-rec(refresh(R1), ∅). Since the precondition is satisfied for
M2-rec(aR1, ∅), it is satisfied also for M2-rec(refresh(R1), ∅). Fur-
thermore, since (refresh(R1), ∅) /∈ A(refresh(R1), ∅), we have
A(refresh(R1), ∅) ⊂ A(aR1, ∅). We can then apply the inductive hypothe-
sis:

L(a · M2-rec(refresh(R1), ∅)) = L(a)M2(refresh(R1))
(inductive hypothesis)

=M2(a · refresh(R1))

=M2(aR1)
(∀w ∈ Σ∗ : T((a · refresh(R1),w)) = T((aR1,w)))

218 APPENDIX A. PROOFS

2. (regex-head(R), regex-tail(R)) = (R1 | R2,R3). The first action is a
choice. We can divide M2((R1 | R2)R3) in three subsets: (1) the words
matchedbybothbranches of the current choice, namelyL(R1R3∩�ϵR2R3);
(2) the words that are matched in at least two different traces after tak-
ing the left branch, namelyM2(R1R3); (3) the words that are matched
in at least two different traces after taking the right branch, namely
M2(R2R3). Similarly to the previous case, the precondition in each
subcall is satisfied. Furthermore, A(R1R3, ∅) ⊂ A((R1 | R2)R3, ∅) and
A(R2R3, ∅) ⊂ A((R1 | R2)R3, ∅) hold. We can then apply the inductive hy-
pothesis: L(M2-rec(R1R3, ∅)) equalsM2(R1R3) and L(M2-rec(R2R3, ∅))
equals M2(R2R3). Observing that we return the regular expression
(R1R3 ∩�ϵ R2R3) | M2-rec(R1R2, ∅) | M2-rec(R2R2, ∅), we can conclude:

L(M2-rec((R1 | R2)R3, ∅))

= L((R1R3 ∩�ϵ R2R3) | M2-rec(R1R3, ∅) | M2-rec(R2R3, ∅))

= L(R1R3 ∩�ϵ R2R3) ∪M2(R1R3) ∪M2(R2R3) (inductive hypothesis)

=M2((R1 | R2)R3)

3. (regex-head(R), regex-tail(R)) = (R∗1 ,R2). Then the first action is a
choice. Similarly to the previous case, we can divideM2(R∗1R2) in three
subsets: (1) the words matched by both branches of the current choice
(that is to expand the star or not), namely L(R1R∗1R2 ∩�ϵR2); (2) the words
that are matched in at least two different traces in the body of the star
and that can reach R∗1R2, namely M

R∗
1R2

2 (R1R∗1R2); (3) the words that
are matched in at least two different traces in R2, namelyM2(R2). Ob-
serve that the words inM2(R2) have as prefix language all the words that
can be matched in R∗1 , so that the last set actually is L(R

∗
1)M2(R2). If the

precondition holds for M2-rec(R∗1R2, ∅), then it holds for the subcalls. Fur-
thermore, A(R1R∗1R2, {R

∗
1R2}) ⊂ A(R∗1R2, ∅) and A(R2, ∅) ⊂ A(R∗1R2, ∅),

219

so that by inductive hypothesis we have:

L(R∗1 · M2-rec(R2, ∅)) = L(R∗1)M2(R2)

M
R∗
1R2

2 (R1R∗1R2) ⊆ L(M2-rec(R1R∗1R2, {R
∗
1R2})) ⊆M2(R1R∗1R2)

Observing that we return (R1R∗1R2 ∩�ϵ R2) | M2-rec(R1R∗1R2, {R
∗
1R2}) |

R∗1 · M2-rec(R2, ∅), we can conclude:

M2(R∗1R2)

= L(R1R∗1R2 ∩�ϵ R2) ∪M
R∗
1R2

2 (R1R∗1R2) ∪ L(R∗1)M2(R2)

⊆ L((R1R∗1R2 ∩�ϵ R2)

| M2-rec(R1R∗1R2, {R
∗
1R2}) | R

∗
1 · M2-rec(R2, ∅))

(inductive hypothesis)

⊆ L(R1R∗1R2 ∩�ϵ R2) ∪M2(R1R∗1R2) ∪ L(R∗1)M2(R2)
(inductive hypothesis)

=M2(R∗1R2) (MR∗
1R2

2 (R1R∗1R2) ⊆M2(R1R∗1R2) ⊆M2(R∗1R2))

So that L((R1R∗1R2 ∩�ϵ R2) | M2-rec(R1R
∗
1R2, {R

∗
1R2}) | R

∗
1 · M2-rec(R2, ∅))

equalsM2(R∗1R2).

Inductive Case (A(R,E) ̸= ∅), E ̸= ∅

We now consider the other subcase in the inductive case: E ̸= ∅. In this
case, the algorithm is expanding a star, and we show that ML(E)

2 (R) ⊆
L(M2-rec(R,E)) ⊆M2(R). We prove this in three different cases that depend
on R.

1. (regex-head(R), regex-tail(R)) = (a,R1). In this case we return a ·
M2-rec(refresh(R1),E). By the fact that the precondition is satisfied for
M2-rec(R,E), it is satisfied also for M2-rec(refresh(R1),E). Furthermore,
we have A(refresh(R1),E) ⊂ A(aR1,E). We can then apply the inductive

220 APPENDIX A. PROOFS

hypothesis and obtain:

M
L(E)
2 (aR1) =M

L(E)
2 (a · refresh(R1))

(∀w ∈ Σ∗ : T((aR1,w)) = T((a · refresh(R1),w)))

= L(a)ML(E)
2 (refresh(R1))

⊆ L(a · M2-rec(refresh(R1),E)) (inductive hypothesis)

⊆ L(a)M2(refresh(R1)) (inductive hypothesis)

=M2(a · refresh(R1))

=M2(aR1)
(∀w ∈ Σ∗ : T((a · refresh(R1),w)) = T((aR1,w)))

2. (regex-head(R), regex-tail(R)) = (R1 | R2,R3). The first action is a
choice.We can divideML(E)

2 ((R1 | R2)R3) in three subsets: (1) the words in
M
L(E)
2 (R1R3); (2) the words inM

L(E)
2 (R2R3); (3) the words w1w2 with w1 ∈

Σ+,w2 ∈ Σ∗ such that (R1R3,w1w2) −→∗ (L(E),w2), (R2R3,w1w2) −→∗

(L(E),w2) and w2 ∈ L(L(E)). This set corresponds to those words that
have a nonempty prefix that can be matched by both branches of the
alternative and can reach L(E). Let I be this set: observe that it is a sub-
set of L(R1R3 ∩�ϵ R2R3). The precondition in each subcall is satisfied,
A(R1R3,E) ⊂ A((R1 | R2)R3,E) and A(R2R3,E) ⊂ A((R1 | R2)R3,E) hold.
We can then apply the inductive hypothesis and, observing that we return
(R1R3 ∩�ϵ R2R3) | M2-rec(R1R3,E) | M2-rec(R2R3,E), we obtain:

M
L(E)
2 ((R1 | R2)R3)

= I ∪M
L(E)
2 (R1R3) ∪M

L(E)
2 (R2R3)

⊆ L((R1R3 ∩�ϵ R2R3) | M2-rec(R1R3,E) | M2-rec(R2R3,E))
(inductive hypothesis and I ⊆ L(R1R3 ∩�ϵ R2R3))

⊆ L((R1R3 ∩�ϵ R2R3)) ∪M2(R1R3) ∪M2(R2R3)
(inductive hypothesis)

=M2((R1 | R2)R3) (analogous to subcase (R1 | R2)R3 if E = ∅)

221

3. (regex-head(R), regex-tail(R)) = (R∗1 ,R2). The first action in this case
is a choice. We can divide the setML(E)

2 (R∗1R2) in three subsets: (1) the

words in M
L(E∪{R∗

1R2})
2 (R1R∗1R2); (2) the words in M

L(E)
2 (R2) (they have

as prefix language all the words that can be matched in R∗1 , so that ac-
tually the set corresponds to L(R∗1)M

L(E)
2 (R2)); (3) the words w1w2 with

w1 ∈ Σ+,w2 ∈ Σ∗ such that we obtain (R1R∗1R2,w1w2) −→
∗ (L(E),w2),

(R2,w1w2) −→∗ (L(E),w2) and w2 ∈ L(L(E)). This set corresponds to
those words that have a nonempty prefix that can be matched by both
the expansion of the star and R2, and can then reach L(E). Let I be this
set: observe that it is a subset of L(R1R∗1R2 ∩�ϵ R2). The precondition
in each subcall is satisfied, A(R1R∗1R2,E ∪ {R

∗
1R2}) ⊂ A(R∗1R2,E) and

A(R2,E) ⊂ A(R∗1R2,E) hold. We can then apply the inductive hypothe-
sis and, observing that we return (R1R∗1R2 ∩�ϵ R2) | M2-rec(R1R

∗
1R2,E ∪

{R∗1R2}) | R
∗
1 · M2-rec(R2,E), we obtain:

M
L(E)
2 (R∗1R2)

= I ∪M
L(E∪{R∗

1R2})
2 (R1R∗1R2) ∪ L(R∗1)M

L(E)
2 (R2)

⊆ L((R1R∗1R2 ∩�ϵ R2)

| M2-rec(R1R∗1R2,E ∪ {R
∗
1R2}) | R

∗
1 · M2-rec(R2,E))

(inductive hypothesis and I ⊆ L(R1R∗1R2 ∩�ϵ R2))

⊆ L(R1R∗1R2 ∩�ϵ R2) ∪M2(R1R∗1R2) ∪M2(R2) (inductive hypothesis)

=M2(R∗1R2) (analogous to subcase R = R∗1R2 if E = ∅)

The overall correctness of M2 (Thm. 4.1) is then a corollary of the correctness
of M2-rec (Thm. A.1).

Corollary A.1 (Correctness of M2)
Let R ∈ R.

L(M2(R)) =M2(R)

Proof
Follows immediately from the fact that M2(R) is M2-rec(R, ∅). The precon-

222 APPENDIX A. PROOFS

dition of Thm. A.1 holds for the arguments. By applying Thm. A.1, we can
observe what follows.

L(M2(R)) = L(M2-rec(R, ∅)) =M2(R)

We now prove the correctness of Lemma 4.2.

Proof (Lemma 4.2)
Let t′ be the subtree from the root (R,w) to the nodes in the frontier
front((R,w)). Observe that the nodes in front((R,w)) are the only ones that
possibly have subtrees outside the portion that we are considering: all the
others are either internal nodes in t′ or do not have children. Observe also
that the number of nodes in t′ does not depend on |w|, but just on R and the
first character of w, if there is any.
The number of nodes in front((R,w)) is bounded by |rch(R)|, since there is
at most one occurrence of any regex R1 ∈ rch(R) in front((R,w)). This is
because, if there were two occurrences of anyR1 ∈ rch(R), this would violate
the hypothesisM2(R) = ∅: there would be two different traces to match the
first character of w. Furthermore, for the same reason, it holds that for each
i ∈ { 1, . . . , |w| }:

|fronti((R,w))| ≤ |rch(R)|

Since the width of the matching tree grows as the size of the frontiers, this
implies that the width of the matching tree is O(|rch(R)|). By Lemma 4.1, the
height of the matching tree is at most linear in the length of the word, so
that |JRK(w)| = O(|w| · |rch(R)|). Since |rch(R)| does not depend on |w|, we
conclude that |JRK(w)| = O(|w|).

We can finally prove the soundness of our analysis (Thm. 4.2).

Proof (Thm. 4.2)
We prove the theorem by induction on nstars(R). The base case is
nstars(R) = 0, namely in R there are no stars. We observe that stars are
the only constructors that allow matching an arbitrary number of characters,
which implies that the size of each matching tree is bounded by a constant

223

that does not depend on the input word, namely |JRK(w)| = O(1). This can be
seen as a consequence of the fact that L(R) is finite.
The inductive case is nstars(R) ≥ 1. The only case that we consider is when
regex-head(R) = R∗1 and regex-tail(R) = R2. All other cases can be re-
duced to this: constructors that are not stars can match only a constant num-
ber of characters before reaching a star. Observe that by definition of E,
E(R∗1R2, ϵ, ϵ) =L ⊥r implies E(R2,R

∗
1 , ϵ) =L ⊥r. Since the prefixes do not

change the emptiness of the result, E(R2, ϵ, ϵ) =L ⊥r. By observing that
nstars(R2) < nstars(R∗1R2), we can apply the inductive hypothesis and ob-
tain the following.

|JR2K(w)| = O(|w|nstars(R2)) = O(|w|nstars(R
∗
1R2)–1)

Therefore, for all w ∈ Σ∗, if w′ is a suffix of w, all subtrees JR2K(w′) of JRK(w)
have size atmost polynomial in |w′|, which implies that the size is atmost poly-
nomial in |w|. Since E(R∗1R2, ϵ, ϵ) =L ⊥r, then M2(R∗1) =L ⊥r. By Lemma 4.2
we can observe that matching any word in R∗1 is at most linear in the length
of the input word. Let w ∈ Σ∗. In JR∗1R2K(w) there are at most |w| nodes of
type (R2,w′) after matching any prefix of w in R∗1 , namely at most one for
any prefix of w. This is because M2(R∗1) =L ⊥r implies that it is not possible
to have two different traces that match any prefix of w. These observations
imply that the matching tree can be decomposed in the part in which R∗1 is
expanded (which is linear), and at most |w| subtrees in which R2 is expanded.
We already observed that all those subtress have size O(|w|nstars(R

∗
1R2)–1).

Therefore, we obtain:

|JR∗1R2K(w)| = O(|w|) +
|w|∑
i=1

O(|w|nstars(R
∗
1R2)–1)

= O(|w|) + |w|O(|w|nstars(R
∗
1R2)–1)

= O(|w|nstars(R
∗
1R2))

This proves the theorem. Observe that actually E(R∗1R2, ϵ, ϵ) =L ⊥r can be
caused not exclusively by M2(R∗1) =L ⊥r, but also by R

∗
1R2 =L ⊥r. The only

224 APPENDIX A. PROOFS

language that has as complement the empty language is Σ∗, which implies
that L(R∗1R2) = Σ∗. This case is then analogous to the previous one, because
even though there might be an exponential number of traces to match a
word in R∗1 , only one is actually expanded, since R

∗
1R2 accepts any word. In

this case, there exists no suffix that can make the match fail and trigger the
exhaustive exploration of the set of traces.

Proofs for Chapter 7

Proof (Equation (7.14))
LetR ∈ ℘(D) and T ∈ ℘(V).

αt(R) ⊇ T ⇐⇒ T ⊆ αt(R)

⇐⇒ T ⊆ { x ∈ V |R ⊆ T(x) }

⇐⇒ ∀x ∈ T :R ⊆ T(x)

⇐⇒ ∀x ∈ T : ∀R ∈R : R ∈ T(x)

⇐⇒ ∀R ∈R : ∀x ∈ T : R ∈ T(x)

⇐⇒ R ⊆ {R | ∀x ∈ T : R ∈ T(x) }

⇐⇒ R ⊆
⋂
x∈T

T(x)

⇐⇒ R ⊆ γt(T)

Before proving Thm. 7.1, we give an alternative characterization ofNE.

NE = {R ∈ D | ret /∈ αt({R }) } (A1)

Proof

NE

= {R ∈ D | ∀((m0, i0, r0), (m1, i1, r1)), ((m′0, i
′
0, r
′
0), (m

′
1, i
′
1, r
′
1)) ∈ R :

225

m0 = m′0, i0 ̸= i
′
0, r0 = r

′
0 =⇒ m1(ret) = m′1(ret)}

(definition ofNE)

= {R ∈ D | ∄((m0, i0, r0), (m1, i1, r1)), ((m′0, i
′
0, r
′
0), (m

′
1, i
′
1, r
′
1)) ∈ R :

m0 = m′0, r0 = r
′
0 : m1(ret) ̸= m

′
1(ret)} (negation of ∀)

= {R ∈ D | ret ∈ αt({R})} (definition of αt)

= {R ∈ D | ret /∈ αt({R})} (αt defines a partition over V)

Proof (Thm. 7.1)
Follows immediately from Equation (A1).

Proof (Equation (7.15))

αt({R0})

= { x ∈ V | {R0} ⊆ T(x) }

= { x ∈ V | R0 ∈ T(x) }

= { x ∈ V | R0 ∈ {R ∈ D |

∃((m0, i0, r0), (m1, i1, r1)), ((m′0, i
′
0, r
′
0), (m

′
1, i
′
1, r
′
1)) ∈ R :

m0 = m′0, r0 = r
′
0 : m1(x) ̸= m

′
1(x) } } (definition ofT(x))

= { x ∈ V | ∃((m0, i0, r0), (m1, i1, r1)), ((m′0, i
′
0, r
′
0), (m

′
1, i
′
1, r
′
1)) ∈ R0 :

m0 = m′0, r0 = r
′
0 : m1(x) ̸= m

′
1(x) }

⊆ { x ∈ V | ∃((m0, i0, r0), (m1, i1, r1)), ((m′0, i
′
0, r
′
0), (m

′
1, i
′
1, r
′
1)) ∈ R1 :

m0 = m′0, r0 = r
′
0 : m1(x) ̸= m

′
1(x) } (R0 ⊆ R1)

= αt({R1})

Proof (Thm. 7.2)

R1 ∈NE ⇐⇒ ret /∈ { x | R1 ∈ T(x) } (Thm. 7.1)

=⇒ ret /∈ { x | R0 ∈ T(x) } (R0 ⊆ R1 and Equation (7.15))

⇐⇒ R0 ∈NE (Thm. 7.1)

226 APPENDIX A. PROOFS

Proof (Thm. 7.3)
By structural induction. Skip statements and statement composition are
trivial, and we do not report them. The correctness of x = input() follows
from the fact that the variable x is the only one that assumes a different value,
and hence can become tainted after the execution of the statement. For this
reason, { y ∈ T | y ̸= x } exactly corresponds to the set of tainted variables
after the execution of the statement using the hypothesis T = αt({R }). Using
the definition of αt, we can observe that x is tainted if and only if the first
element in the sequence of input can be controlled by the user, namely there
are two executions whose initial states differ only in the user input and end
in different first values for the input sequence. Random read statements are
analogous.
Assignments are similar. Again, the only variable that can assume a different
value is x, so that it is the only one that can become possibly tainted. For this
reason, { y ∈ T | y ̸= x } exactly corresponds to the set of other tainted variables
after the execution of the statement using the hypothesis T = αt({R }). Using
the definition of αt, we observe that x is tainted iff there are two executions
that differ in the initial states only in the input sequence, and result in different
(non-error) values for the arithmetic evaluation in the input memory. This
exactly corresponds to our definition.
By using αt, we can observe that the tainted variables after the execu-
tion of if statements are: 1) those tainted in the then branch; 2) those
tainted in the else branch; 3) those that assume different values in the two
branches, in case which one of the two branches is executed depends on
the user input. The first two cases are simple, and follow by inductive hy-
pothesis. Observe that T \ αt({testJBKR}) exactly corresponds to the set of
tainted variables in the then branch under our assumption that T = αt({R}).
The same holds for T \ αt({testJ¬BKR}) and the else branch. The third
case is covered by the definition of diffJif (B) St else SeK, as it considers
all possible pairs of execution that in the initial state differ only in the
user input, explore different branches, and then result in different values
for some variables. For while statements it is sufficient to observe that
λ(R1,E1,T1) . (R,E,T) ∪̇ ŜtJif (B) Sb else skipK(R1,E1,T1) is monotonic, and

227

the correctness of the rule follows from the correctness for if statements.

Proof (Thm. 7.4)
By structural induction. Some cases are trivial, and we do not report them.
For input read statements, it is sound to always taint the variable x, which is
the only variable that possibly assumes a different value.
For random read statements, the only variable that can assume a different
value is x, so that x is the only variable that can become tainted after the
execution of x = rand(). By considering the definition of ŜtJx = rand()K,
we observe that this happens only if the user can control which number in
the sequence of random numbers is read. The soundness then follows by
inductive hypothesis observing that if the user can control the value of the
index variable i, then i is tainted. If i is tainted, then we taint x.
Similarly to the previous cases, x is the only variable that can become tainted
after the execution of assignment x = A. Then, the soundness of the abstract
semantics follows from the fact that taint♯JAK returns ff only if the result of
the arithmetic evaluation is definitely not influenced by user input.
For if statements, the fact that the tainted variables computed in the branches
are an overapproximation of the truly tainted ones follows by inductive hy-
pothesis. Then, we observe that diff♯Jif (B) St else SeK returns more vari-
ables than diffJif (B) St else SeK. If a variable x is in diffJif (B) St else SeK,
then the user can control the outcome of BJBK, and x is definitely assigned
in at least one of the branches. We can then conclude by using the sound-
ness of assigned♯JSK and the fact that if the user can control the evaluation
of the boolean condition, then taint♯JBK is tt. Since while statements are
defined in terms of if statements, the soundness of the former follows from
the soundness of the latter.

The following result is useful to observe the connection between the StJSK and
S
♯
tJSK.

αt({γd(R
♯)}) ⊆ T♯ =⇒ StJSK(γd(R

♯),γd(E
♯)) ⊆̇γ(S♯tJSK(R

♯,E♯,T♯)) (A2)

228 APPENDIX A. PROOFS

Proof

StJSK(γd(R
♯),γd(E

♯)) =̇ ŜtJSK(γd(R
♯),γd(E

♯),αt({γd(R
♯)})) (Thm. 7.3)

⊆̇ ŜtJSK(γd(R
♯),γd(E

♯),T♯)
(αt({γd(R♯)}) ⊆ T♯ and monotonicity of ŜtJSK)

⊆̇ γ(S♯tJSK(R
♯,E♯,T♯)) (Thm. 7.4)

Proof (Thm. 7.5)
The fundamental observation to prove that if ret is tainted in the concrete
semantics, then it is tainted in the abstract semantics is that if ret is tainted
in the concrete, then there is at least one statement in which a runtime error
occurs, and such an error can be triggered by the user. Since the abstract
semantics taints ret every time there is a possible runtime error that could
be triggered by the user, if ret is tainted in the concrete semantics, it will
definitely be tainted in the abstract semantics.

Appendix B

RAT Implementation Details

We implemented our ReDoS analysis detection technique in the RAT [40] tool
(ReDoS Abstract Tester) in less than 5000 lines of OCaml code. In this section, we
describe the most meaningful portions of the implementation. Transitional regular
expressions (see Section 4.3), which are the input of the analysis, are represented
as an algebraic data type. The stars are labelled as closed or not by a boolean flag.
Transitional regular expressions are implemented in the Remodule.
1 (** Type of the regular expressions. *)

2 type t =

3 | Epsilon

4 | Char of Charset.t

5 | Concat of t * t

6 | Alternative of t * t

7 | Star of bool * t (* true if the star can be expanded. *)

Characters are implemented as character classes, namely non-empty sets of
characters rather than single characters. As discussed in Section 5.4, this enhances
the performance of our implementation. The output of our ReDoS analysis is a
possibly-empty regular expression, namely an element of R⊥. We implement R⊥

as extended regular expressions (see Section 3.2), namely possibly empty regular
expressions with symbolic intersection and complement operations. Since in our
algorithmwe extensively use such operations, this again improves the performance
of our detector. The extended regular expressions are implemented in the ExtRe
module as follows.
1 (** Extended regular expressions. *)

229

230 APPENDIX B. RAT IMPLEMENTATION DETAILS

2 type t =

3 | Empty

4 | Epsilon

5 | Char of Charset.t

6 | Concat of t list

7 | Alternative of t list

8 | Star of t

9 | Inter of t list

10 | Compl of t

The concatenation, alternative, and intersection constructors use lists rather
than pairs of regular expressions. This representation makes it more efficient
to perform some operations, such as folding, on large expressions. The ExtRe

module exposes smart constructors (see Section 3.2), namely constructors that
automatically reduce the size of the regular expressions when building them, while
preserving the accepted language. An example is concat, which automatically
removes Epsilon from the concatenation. To convert from Re.t (i.e., transitional
regular expressions) to ExtRe.t (i.e., extended regular expressions), we use the
to_ext_re function, which is trivial and we do not report here.

Observe that we do not use smart constructors and optimized algorithms to
build transitional regular expressions, as it is important to faithfully represent
the input of the analysis. This is due to the fact that we do not want to inject or
remove potential ReDoS vulnerabilities, which depend on the syntax of the regular
expressions. Consider, for instance, the vulnerable expression (a | a)∗. If we used
a smart constructor for the alternative that simplifies R | R to R, we would obtain
as input a∗, where the vulnerability has been removed. This would result in an
unsound analysis. On the other hand, extended regular expressions are used only
to compute the attack language, and can leverage smart constructors in order to
reduce their size and, therefore, improve the performance.

The attack language computed by our analysis is the union of regular expres-
sions that have the form P · R∗ · S, for some prefix P, pump R, and suffix S. We
represent this regular expression with a specific type in the AttackFamilymodule:

1 type t = {

2 prefix : ExtRe.t;

3 pump : ExtRe.t;

4 suffix : ExtRe.t

231

5 }

The result of the analysis is then a set of AttackFamily.t, which in our imple-
mentation is AttackFamilySet.t. The analysis matches the definition of E, and it
is implemented as follows.

1 (** [exp_attack_families r] returns the families of

2 exponentially attack words for the regex [r]. *)

3 let rec exp_attack_families r =

4 exp_attack_rec ExtRe.eps ExtRe.eps r

5 |> AttackFamilySet.remove_empty

6
7 and exp_attack_rec pref suff r =

8 match r with

9 | Epsilon -> AttackFamilySet.empty

10 | Char _ -> AttackFamilySet.empty

11 | Alternative (r1, r2) ->

12 exp_attack_rec_alternative pref suff r1 r2

13 | Concat (r1, r2) ->

14 exp_attack_rec_concat pref suff r1 r2

15 | Star (_, r1) ->

16 exp_attack_rec_star pref suff r r1

17
18 and exp_attack_rec_alternative pref suff r1 r2 =

19 AttackFamilySet.union

20 (exp_attack_rec pref suff r1)

21 (exp_attack_rec pref suff r2)

22
23 and exp_attack_rec_concat pref suff r1 r2 =

24 AttackFamilySet.union

25 (exp_attack_rec pref (ExtRe.concat (to_ext_regex r2) suff) r1)

26 (exp_attack_rec (ExtRe.concat pref (to_ext_regex r1)) suff r2)

27
28 and exp_attack_rec_star pref suff r r1 =

29 let pref = ExtRe.concat pref (to_ext_regex r) in

30 let suff = ExtRe.concat (to_ext_regex r) suff in

31 let negated_suff = ExtRe.compl suff in

32 let pump = m2 r in

33 let attack_family =

34 AttackFamilySet.singleton

35 { prefix = pref; pump; suffix = negated_suff }

232 APPENDIX B. RAT IMPLEMENTATION DETAILS

36 in

37 let attack_e ’ = exp_attack_rec pref suff r1 in

38 AttackFamilySet.union attack_family attack_e ’

The function exp_attack_rec exactly corresponds to the analysis E. We now
show how the function M2 (see Algorithm 2) is implemented. The module RS is an
alias to the RegexSet module, that implements sets of regular expressions.

1 (** [m2 r] returns the language of words that can possibly be

2 matched in at least two traces in the expression [r]. *)

3 let rec m2 r = m2_rec r RS.empty

4
5 and m2_rec r explored =

6 if RS.mem r explored then ExtRe.empty

7 else

8 match (head r, tail r) with

9 | Epsilon , _ | Star (false , _), _ -> ExtRe.empty

10 | (Char _ as a), r1 ->

11 ExtRe.concat

12 (to_ext_regex a)

13 (m2_rec (Re.refesh_stars r1) explored)

14 | Alternative (r1, r2), r3 ->

15 let inter =

16 non_eps_iter (Concat (r1, r3)) (Concat (r2, r3)) in

17 let left = m2_rec (Concat (r1 , r3)) explored in

18 let right = m2_rec (Concat (r2 , r3)) explored in

19 ExtRe.alternative inter (ExtRe.alternative left right)

20 | (Star (true , r1) as r1_star), r2 ->

21 let expanded =

22 Concat (r1 , Concat (Star (false , r1), r2)) in

23 let inter = non_eps_iter expanded r2 in

24 let left = m2_rec expanded (RS.add r explored) in

25 let right =

26 ExtRe.concat

27 (to_ext_regex r1_star) (m2_rec r2 explored) in

28 ExtRe.alternative inter (ExtRe.alternative left right)

The last interestingpart of the code thatwe report is theprocedure non_eps_inter,
which computes the ∩

�ϵ
operator as described in Section 4.4 (see Algorithm 3).

1 (** [remove_eps r] returns a regular expression [r’] that

2 accepts the same language as [r] without [Epsilon]. *)

233

FIGURE A1. Example usage of the RAT tool

3 let rec remove_eps r =

4 match (head r, tail r) with

5 | Epsilon , _ | Star (false , _), _ -> ExtRe.empty

6 | (Char _ as a), r1 ->

7 ExtRe.concat

8 (to_ext_regex a) (refesh_stars r1 |> to_ext_regex)

9 | Alternative (r1, r2), r3 ->

10 ExtRe.alternative

11 (remove_eps (Concat (r1 , r3)))

12 (remove_eps (Concat (r2 , r3)))

13 | Star (true , r1), r2 ->

14 ExtRe.alternative

15 (remove_eps (Concat (r1 , Concat (Star (false , r1), r2))))

16 (remove_eps r2)

17
18 let non_eps_iter r1 r2 =

19 ExtRe.inter (remove_eps r1) (remove_eps r2)

Figure A1 shows RAT’s output when analyzing the regular expression (a | a)∗

assuming the fullmatch semantics. Observe that the tool prints the computed
attack language and an example exploit string. The length of the exploit string
can be adjusted with a command-line parameter. Exploit strings are obtained
by transforming the attack language into an automaton (see Section 3.3 for an
overview of the existing conversion methods between regular expressions and
automata), and then performing a breadth-first search from the initial state to any
accepting state to compute an attack word.

234 APPENDIX B. RAT IMPLEMENTATION DETAILS

Appendix C

Interval analysis helper
functions

In this section, we define the helper functions used in the analysis proposed in
Section 7.8. First, by relying on zero♯JAK, we define a function that determines
whether there is a possible runtime error in the evaluation of expressions:

haserror♯JAK⊥♯ ≜ ff

haserror♯JnKR♯ ≜ ff

haserror♯JxKR♯ ≜ ff

haserror♯JA1 ⋄ A2KR♯ ≜


tt if ⋄ = /, zero♯JA2KR♯

tt if haserror♯JA1KR♯ or haserror♯JA2KR♯

ff otherwise

The function assigned♯JSKmust be sound with respect to the following:

{ x | ∃((m0, i0, r0), (m1, i1, r1)) ∈ γt(R♯) : ∃(m2, i2, r2) :

((m0, i0, r0), (m2, i2, r2)) ∈ SJSK({((m0, i0, r0), (m1, i1, r1))}, ∅) :

m1(x) ̸= m2(x) } ⊆ assigned♯JSKR♯

235

236 APPENDIX C. INTERVAL ANALYSIS HELPER FUNCTIONS

Then, for intervals, we define the function assigned♯iJSK : V♯
I → ℘(V) as follows.

assigned
♯
iJSK⊥

♯ ≜ ∅

assigned♯iJskipKR
♯ ≜ ∅

assigned♯iJS1; S2KR
♯ ≜ assigned♯iJS1KR

♯ ∪ assigned♯iJS2K(S
♯

V♯
I

JS1KR♯)

assigned♯iJx = input()KR♯ ≜ {x}

assigned♯iJx = rand()KR♯ ≜ {x, i}

assigned♯iJx = AKR♯ ≜ { ret | haserror♯JAKR♯ }∪

{ x | ¬isconst♯iJAKR
♯ or ¬isconst♯iJxKR

♯ or

R♯(x) ̸= A
♯

V♯
I

JAKR♯ }

assigned♯iJif (B) St else SeKR
♯ ≜ { ret | haserror♯JBKR♯ }∪

assigned♯iJStK(test
♯

V♯
I

JBKR♯)∪

assigned♯iJSeK(test
♯

V♯
I

J¬BKR♯)

assigned♯iJwhile (B) SbKR
♯ ≜ let (R♯f ,X f) = lim Fn(⊥♯, ∅) in X f

where F(R♯1,X1) ≜ let R♯2 = R
♯
1∇i (R

♯ ∪♯
V♯

I

S
♯

V♯
I

Jif (B) Sb else skipKR
♯
1) in

let X2 = X1 ∪ assigned
♯
iJif (B) Sb else skipKR

♯
1 in

(R♯2,X2)

Observe that we do not include in assigned♯iJx = AK the variable x is case its
value is not modified by the statement, for instance in x = 0 when x is already 0.
For x not to be included in assigned♯Jx = AK, the arithmetic evaluation of Amust
be constant, the previous value of x in R♯ must be constant, and the two must be
exactly the same interval.

List of Figures

2.1 Examples of posets . 13
2.2 Examples of lattices . 15
2.3 Examples of operators . 17
2.4 Kleene’s fixpoint iterates . 19

3.1 Examples of FAs . 29
3.2 DFA obtained with the subset construction from the NFA in Figure 3.1B 30
3.3 Thompson construction . 33
3.4 Thompson’s automaton for aba∗ 34
3.5 Generic shapes of automata with one or two states 34
3.6 Example of Glushkov’s automaton for aba∗ 36
3.7 Language-preserving conversion methods between regular expres-

sions and finite automata . 37

4.1 Python program that matches a dangerous string against a vulnera-
ble regular expression . 44

4.2 Examples of matching trees . 52
4.3 Glushkov’s automaton for (a∗)∗ . 64
4.4 Glushkov’s automaton for Σ∗ | (a | a)∗ over Σ = { a, b } 65

5.1 Survival plot with a logarithmic y axis and linear x axis 76

6.1 Syntax of the WHILE language . 84
6.2 The interval complete lattice . 102
6.3 Interval abstraction of the concrete state { { x 7→ 1, y 7→ 1 }, { x 7→

4, y 7→ 4 } } . 109

237

238 LIST OF FIGURES

7.1 C program with exploitable buffer overflow 129
7.2 Syntax of the WHILE language with nondeterminism 133
7.3 C program that reads pseudo-random numbers 143

8.1 Simplified versions of test cases for index out-of-bounds 171

A1 Example usage of the RAT tool . 233

List of Tables

4.1 Matching algorithms comparison 43

5.1 Attributes of the ReDoS detectors 72
5.2 ReDoS detectors precision evaluation results 74

6.1 List of some existing numeric abstract domains 119

8.1 List of C functions that generate tainted data in MOPSA-NEXP . . . 169
8.2 Safety-nonexploitability evaluation results 170

239

240 LIST OF TABLES

List of Definitions, Theorems,
Lemmas, and Corollaries

2.1 Definition (Poset) . 13
2.2 Definition (Lattice) . 14
2.3 Definition (Complete lattice) . 14
2.4 Definition (CPO) . 15
2.5 Definition (Fixpoints) . 16
2.1 Theorem (Tarski’s fixpoint theorem [56]) 17
2.2 Theorem (Kleene’s Fixpoint Theorem [57]) 18

3.1 Definition (Regular language) . 25
3.1 Theorem (Brzozowski’s theorem [63]) 28
3.2 Theorem (Correctness of sub [58]) 31
3.3 Theorem (Correctness of epsremove [58]) 32
3.4 Theorem (Correctness of thompson [58]) 32
3.5 Theorem (Correctness of stateelim [58]) 35
3.6 Theorem (Correctness of glushkov [66]) 36
3.7 Theorem (Equivalance of automata and regular expressions) . . . 37

4.1 Definition (Matching tree semantics) 52
4.2 Definition (ReDoS Vulnerability) 53
4.1 Lemma (Height of matching tree) 53
4.1 Theorem (Correctness of M2) . 56
4.2 Lemma (Linear matching with no ambiguity) 57
4.3 Definition (ReDoS analysis) . 58

241

242 LIST OF DEFINITIONS, THEOREMS, LEMMAS, AND COROLLARIES

4.2 Theorem (Soundness of ReDoS analysis) 59

6.1 Definition (Safety property) . 93
6.2 Definition (Liveness property) . 93
6.1 Theorem (Trace properties as conjunction of safety and liveness [122]) 94
6.3 Definition (Hypersafety property) 95
6.4 Definition (k-hypersafety property) 95
6.5 Definition (Noninterference) . 96
6.6 Definition (Subset-closed hyperproperty) 97
6.2 Theorem (Hypersafety properties are subset-closed [50]) 98
6.7 Definition (Hyperliveness property) 98
6.3 Theorem (Hyperproperties as conjunctions of hypersafety and hy-

perliveness [50]) . 99
6.4 Theorem (Rice’s Undecidability Theorem [22]) 99
6.8 Definition (Sound abstraction) . 103
6.9 Definition (Exact abstraction) . 103
6.10 Definition (Sound operator abstraction) 104
6.11 Definition (Exact operator abstraction) 104
6.12 Definition (Galois connection) . 104
6.5 Theorem (Soundness of abstract interval arithmetic expression eval-

uation) . 110
6.6 Theorem (Soundness of test♯

V♯
I

JBK) 111

6.7 Theorem (Soundness of the interval abstract semantics) 112
6.13 Definition (Widening operator) 113
6.14 Definition (Abstract value domain) 115
6.15 Definition (Abstract domain) . 117
6.16 Definition (Reduced product) . 121

7.1 Definition (Safety-nonexploitability) 137
7.2 Definition (Safety-exploitability) 138
7.3 Definition (Taint) . 139
7.4 Definition (Semantically tainted variable) 140
7.1 Theorem (Chaterization ofNE with taint) 140
7.2 Theorem (NE is subset-closed) 142

LIST OF DEFINITIONS, THEOREMS, LEMMAS, AND COROLLARIES 243

7.3 Theorem (Correctness of ŜtJSK) 148
7.4 Theorem (Soundness of S♯tJSK) . 150
7.5 Theorem (Soundness of the safety-nonexploitability analysis) . . . 150

A.1 Theorem (Correctness of M2-rec) 215
A.1 Corollary (Correctness of M2) . 221

244 LIST OF DEFINITIONS, THEOREMS, LEMMAS, AND COROLLARIES

List of Examples

2.1 Example (Poset) . 13
2.2 Example (Hasse diagram) . 13
2.3 Example (Lattices) . 14
2.4 Example (Infinite ascending chain) 15
2.5 Example (Fixpoints in Fibonacci’s sequence) 16
2.6 Example (Operator with no fixpoints) 17
2.7 Example (Tarski’s least fixpoint) 18
2.8 Example (Kleene’s least fixpoint computation) 19

3.1 Example (Regular expression) . 25
3.2 Example (Brzozowski’s derivative) 28
3.3 Example (Finite automata) . 30
3.4 Example (Subset construction) . 31
3.5 Example (State elimination construction) 35
3.6 Example (Glushkov’s contruction) 36

4.1 Example (T((a∗, a))) . 50
4.3 Example ((O⊑ ◦ Tc)((a∗, a))) . 51
4.4 Example ((Fϵ ◦ O⊑ ◦ Tc)((a∗, a))) 52
4.5 Example (Matching tree) . 52
4.6 Example (ReDoS vulnerability) . 53
4.7 Example (M2((a | a)∗)) . 56
4.8 Example (Nested stars and ReDoS vulnerabilities) 56
4.9 Example (ReDoS analysis) . 59
4.10 Example (Loss of precision in ReDoS analysis) 60

245

246 LIST OF EXAMPLES

6.1 Example (WHILE program computing the factorial) 84
6.2 Example (Assignment with division by zero) 87
6.3 Example (Fixpoint semantics) . 89
6.4 Example (Infinite Kleene’s iterations) 89
6.5 Example (Safety property) . 93
6.6 Example (Liveness property) . 94
6.7 Example (Total correctness) . 94
6.8 Example (Explicit flow) . 96
6.9 Example (Implicit flow) . 97
6.10 Example (Hyperliveness property) 98
6.11 Example (Interval abstraction) . 101
6.12 Example (Sound abstraction) . 103
6.13 Example (Unsound abstraction) 103
6.14 Example (Galois connection) . 105
6.15 Example (Best operator abstraction) 105
6.16 Example (Absence of Galois connection) 107
6.17 Example (Concretization of interval abstraction) 108
6.18 Example (Loss of information in the interval domain) 109
6.19 Example (Abstract arithmetic evaluation) 111
6.20 Example (Interval analysis with widening) 114
6.21 Example (Relational analysis) . 119
6.22 Example (Interval-congruence reduced product) 122

7.1 Example (Nondeterminism and random input read) 136
7.2 Example (Nonexploitability and exploitability) 138
7.3 Example (Comparison with robust reachability [213]) 138
7.4 Example (Implicit flows and taint) 140
7.5 Example (Taint concrete semantics) 142
7.6 Example (Semantically tainted variables and implicit flows) 147
7.7 Example (Semantically tainted variables and boolean conditions) . 147
7.8 Example (Safety-exploitability in assignments) 153
7.9 Example (Abstract taint semantics and implicit flows) 156
7.10 Example (Abstract taint semantics with implicit flows and random

reads) . 156

	I Background
	Introduction
	Approaches to reliable software
	The challenges of cybersecurity
	Contributions and outline
	Verification of security properties for regular expressions
	Verification of security properties for programs
	Contributions

	Mathematical Background
	Basics
	Order theory
	Fixpoints

	II Verification of Security Properties for Regular Expressions
	Regular Expressions and Automata
	Formal languages
	Regular expressions
	Finite automata
	Conclusion

	Regular Expression Denial of Service Vulnerabilities Analysis
	Motivation
	Background
	Regular expression matching in programming languages
	ReDoS vulnerabilities
	ReDoS detection
	Backtracking regular expression matching

	Regular expression matching semantics
	ReDoS vulnerabilities detection
	Analysis extensions
	Backreferences
	Lookaround assertions
	Superlinear matching analysis

	Related work
	Semantics-based static ReDoS detection
	Dynamic ReDoS detection
	Heuristics-based static ReDoS detection
	ReDoS mitigation
	Regular expression derivatives

	Conclusion

	ReDoS Analysis Experimental Evaluation
	Experimental setup
	Precision comparison
	Performance comparison
	Discussion
	Conclusion

	III Verification of Security Properties for Programs
	Static Analysis by Abstract Interpretation
	Syntax
	Semantics
	Expressions semantics
	Reachability semantics
	Trace semantics

	Program properties
	Trace properties
	Hyperproperties
	Undecidability of semantic program properties

	Static analysis and abstract interpretation
	Concrete and abstract elements
	The best abstraction: Galois connections
	Static analysis and abstract domains
	Static analysis tools based on abstract interpretation

	Conclusion

	Sound Abstract Safety Nonexploitability Analysis
	Introduction
	Motivation
	Taint analysis
	Syntax
	Semantics
	Safety-nonexploitability
	Taint concrete semantics
	Taint abstract semantics
	Related work
	Secure information flow
	Hyperproperties verification
	Security properties verification by abstract interpretation
	Slicing
	Errors classification

	Conclusion

	Safety Nonexploitability Experimental Evaluation
	Implementation
	Performance and precision evaluation
	Discussion
	Conclusion

	IV Conclusion & Future Work
	Conclusion & Future Work
	Bibliography
	Proofs
	Rat Implementation Details
	Interval analysis helper functions
	List of Figures
	List of Tables
	List of Definitions, Theorems, Lemmas, and Corollaries
	List of Examples

