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Return an overapproximation of attack

language:

E(R) ∈ Regex

Theorem (Soundness)

If E(R) is empty, then the size of matching trees grows at

most polynomially with the length of input words

The other direction does not hold (no completeness)

Possible false positives, but no false negatives
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~ Experimental comparison

Implementation: rat

Compared to seven other detectors

Dataset of 74,670 regexes

Found 316 vulnerabilities

(a|a)*
3

OOT SKIP TIME FP FN

rat 178 7,390 1:57:20 49 0

rxxr2 [1] 10 13,765 0:09:29 93 7

rsa [2] 789 16,177 18:48:02 193 1

rsa-full [2] 3,138 16,139 38:11:07 134 1

rexploiter [3] 328 20,202 9:12:34 28 180

rescue [4] 32,208 8,890 325:00:26 0 40

safe-regex 0 0 0:15:40 13,376 21

regexploit 2 421 0:03:41 56 140

redos-detector 2 14,749 0:52:27 14,218 6

1. Static analysis for regular expression exponential runtime via substructural logics. Rathnayake and Thielecke. 2014.

2. Analyzing matching time behavior of backtracking regular expression matchers by using ambiguity of NFA. Weideman et al. 2016.

3. Static detection of dos vulnerabilities in programs that use regular expressions. Wüstholz et al. 2017.

4. ReScue: crafting regular expression DoS attacks. Shen et al. 2018.
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Sound but not complete

Too many FPs =⇒ meaningless results

To lower FPs: more precise abstractions



27/48

~ Abstract interpretation

Technique to prove the absence of runtime errors

Sound but not complete

Too many FPs =⇒ meaningless results

To lower FPs: more precise abstractions



27/48

~ Abstract interpretation

Technique to prove the absence of runtime errors

Sound but not complete

Too many FPs =⇒ meaningless results

To lower FPs: more precise abstractions



27/48

~ Abstract interpretation

Technique to prove the absence of runtime errors

Sound but not complete

Too many FPs =⇒ meaningless results

To lower FPs: more precise abstractions



28/48

~ False positives in most analyzers



28/48

~ False positives in most analyzers



29/48

~ Not all bugs are equal

void use_input(char* input) {
char dest[10];
strcpy(dest, input); // Error!

}

void main() {
char buff[100];
use_input(buff);
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}

void main() {
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fgets(buff, sizeof(buff), stdin);
use_input(buff);

}
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~ Syntax

S := x = A (Programs)

| x = input()

| x = rand()

| S ; S
| if (B) S else S
| while (B) S

A := x (Arithmeitc Expressions)

| n
| A � A (� ∈ {+, -, *, /})

B := A < A (Boolean Expressions)
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x ∈ V (Variables)

m ∈ M = V → Z (Memories)

〈m, i, r〉 ∈ S = M × Z∞ × Z∞ (States)

JSK ∈ D = S → S (Semantics)

Error states are explicitly represented as states with

return = 1
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~ Safety-nonexploitability: a formal definition

The user cannot interfere with the correctness of the program

Changing only user input does not change return

NE = {JSK | ∀〈〈m0, i0, r0〉, 〈m1, i1, r1〉〉, 〈〈m′
0, i′

0, r′
0〉, 〈m′

1, i′
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1〉〉 ∈ JSK :
m0 = m′

0, r0 = r′
0 =⇒ m1[return] = m′

1[return]}

x = input()
1 / x

Safety-exploitable

x = rand()
1 / x
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~ Semantic user-input dependency

A variable is tainted iff the user can control its value

T (x) ={JSK | ∃〈〈m0, i0, r0〉, 〈m1, i1, r1〉〉, 〈〈m′
0, i′

0, r′
0〉, 〈m′

1, i′
1, r′

1〉〉 ∈ JSK :
m0 = m′

0, r0 = r′
0 ∧ m1[x] 6= m′
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αt(R) = {x | ∀JSK ∈ R : JSK ∈ T (x)} x is tainted in S 4⇐⇒ x ∈ αt({JSK})
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~ A semantic taint analysis

Regular value domains

• find RTEs

Taint domain

• label RTEs as exploitable

Side effect

• enhanced taint precision

x = input()
// tainted = {x}

if (x == 1) {
y = 1

} else {
y = 0

}

// tainted = {x,y}

1 / y

x = y

z = x - y

// tainted = {x,y}

1 / z NE 3
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~ Implementation

Implementation: Mopsa-Nexp

Finds common C safety (exploitable) errors

Based on Mopsa
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~ Experiments

77 real-world programs from Coreutils

• Up to ~4000 LOCs

Compared precision and performance of Mopsa-Nexp with
Mopsa

Analyzer Alarms Time

Mopsa 4, 715 1:17:06

Mopsa-Nexp 1, 217 1:28:42

• We prove ~74% of the alarms nonexploitable

• Performance overhead: <16%
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• NE can be seen as noninterference of return
• We can prove noninterference with our analysis

• Techniques for noninterference are not sufficient for NE

Taint analysis [6]

• We rely on a semantic definition

• Combination with values

• Sinks in NE are RTEs

Robust reachability [7]

• Different handling of rand: ∃ vs ∀
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~ Conclusions

Security matters

Security poses non-trivial challenges

Formal reasoning is the only way to ensure

security
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