
Static Analysis for Security Properties of Software

by Abstract Interpretation

Francesco Parolini

PhD Defense

APR team

LIP6, Sorbonne Université

Paris, France

26/06/2024

1/48

2/48

~ Introduction ~

3/48

~ Software & errors

Software is everywhere

Increasing size and complexity =⇒ more bugs

We need techniques for reliable software

3/48

~ Software & errors

Software is everywhere

Increasing size and complexity =⇒ more bugs

We need techniques for reliable software

3/48

~ Software & errors

Software is everywhere

Increasing size and complexity =⇒ more bugs

We need techniques for reliable software

3/48

~ Software & errors

Software is everywhere

Increasing size and complexity =⇒ more bugs

We need techniques for reliable software

4/48

~ Software verification

JP K

JP K ⊆? SafeX

X

X

“Absence of evidence is not evidence of absence”

Theorem (Rice)

All non-trivial program properties are not computable

Formal methods study trade-offs to prove correctness

4/48

~ Software verification

JP K JP K ⊆? Safe

X

X

X

“Absence of evidence is not evidence of absence”

Theorem (Rice)

All non-trivial program properties are not computable

Formal methods study trade-offs to prove correctness

4/48

~ Software verification

JP K JP K ⊆? SafeX

X

X

“Absence of evidence is not evidence of absence”

Theorem (Rice)

All non-trivial program properties are not computable

Formal methods study trade-offs to prove correctness

4/48

~ Software verification

JP K JP K ⊆? SafeX

X

X

“Absence of evidence is not evidence of absence”

Theorem (Rice)

All non-trivial program properties are not computable

Formal methods study trade-offs to prove correctness

4/48

~ Software verification

JP K JP K ⊆? SafeX

X

X

“Absence of evidence is not evidence of absence”

Theorem (Rice)

All non-trivial program properties are not computable

Formal methods study trade-offs to prove correctness

4/48

~ Software verification

JP K JP K ⊆? SafeX

X

X

“Absence of evidence is not evidence of absence”

Theorem (Rice)

All non-trivial program properties are not computable

Formal methods study trade-offs to prove correctness

5/48

~ Abstract interpretation

JP K

JP K]

JP K ⊆ JP K] ⊆? Safe

5/48

~ Abstract interpretation

JP K

JP K]

JP K ⊆ JP K] ⊆? Safe

6/48

~ False positives and negatives

JP K

JP K]

Can raise false positives

JP K

JP K]

Forbids false negatives

6/48

~ False positives and negatives

JP K

JP K]

Can raise false positives

JP K

JP K]

Forbids false negatives

6/48

~ False positives and negatives

JP K

JP K]

Can raise false positives

JP K

JP K]

Forbids false negatives

6/48

~ False positives and negatives

JP K

JP K]

Can raise false positives

JP K

JP K]

Forbids false negatives

6/48

~ False positives and negatives

JP K

JP K]

Can raise false positives

JP K

JP K]

Forbids false negatives

7/48

~ The case of cybersecurity

Security vulnerabilities matter to

• Citizens

• Companies

• Governments

7/48

~ The case of cybersecurity

Security vulnerabilities matter to

• Citizens

• Companies

• Governments

7/48

~ The case of cybersecurity

Security vulnerabilities matter to

• Citizens

• Companies

• Governments

8/48

~ The challenges of cybersecurity

Safe Not safe

Secure Not Secure

?

Defining when a program is secure

Security spans over

• Availability

• Confidentiality

• Integrity

Adapt existing techniques to security

8/48

~ The challenges of cybersecurity

Safe Not safe

Secure Not Secure

?

Defining when a program is secure

Security spans over

• Availability

• Confidentiality

• Integrity

Adapt existing techniques to security

8/48

~ The challenges of cybersecurity

Safe Not safe

Secure Not Secure

?

Defining when a program is secure

Security spans over

• Availability

• Confidentiality

• Integrity

Adapt existing techniques to security

9/48

~ This thesis

Techniques to prove programs secure by formal reasoning

for ReDoS attacks and exploitable runtime errors

Semantic frameworks

Mathematical formalization of the vulnerabilities

Sound, automatic analyses

Experiments on real-world data

9/48

~ This thesis

Techniques to prove programs secure by formal reasoning

for ReDoS attacks and exploitable runtime errors

Semantic frameworks

Mathematical formalization of the vulnerabilities

Sound, automatic analyses

Experiments on real-world data

9/48

~ This thesis

Techniques to prove programs secure by formal reasoning

for ReDoS attacks and exploitable runtime errors

Semantic frameworks

Mathematical formalization of the vulnerabilities

Sound, automatic analyses

Experiments on real-world data

9/48

~ This thesis

Techniques to prove programs secure by formal reasoning

for ReDoS attacks and exploitable runtime errors

Semantic frameworks

Mathematical formalization of the vulnerabilities

Sound, automatic analyses

Experiments on real-world data

9/48

~ This thesis

Techniques to prove programs secure by formal reasoning

for ReDoS attacks and exploitable runtime errors

Semantic frameworks

Mathematical formalization of the vulnerabilities

Sound, automatic analyses

Experiments on real-world data

10/48

~ Part I: Regular Expression Denial of Service Attacks ~

11/48

~ Introduction ~

12/48

~ ReDoS attacks: what

Regular expression Denial of Service (ReDoS)

Algorithmic complexity attack

Matching engines have exponential complexity

12/48

~ ReDoS attacks: what

Regular expression Denial of Service (ReDoS)

Algorithmic complexity attack

Matching engines have exponential complexity

12/48

~ ReDoS attacks: what

Regular expression Denial of Service (ReDoS)

Algorithmic complexity attack

Matching engines have exponential complexity

13/48

~ Example

14/48

~ ReDoS attacks: some numbers

42% of the 4,000 mostly starred Python projects on Github use regexes

10% of the Node.js-based webservers are vulnerable

Vulnerable languages

Only 38% of the developers know about the existence of ReDoS

14/48

~ ReDoS attacks: some numbers

42% of the 4,000 mostly starred Python projects on Github use regexes

10% of the Node.js-based webservers are vulnerable

Vulnerable languages

Only 38% of the developers know about the existence of ReDoS

14/48

~ ReDoS attacks: some numbers

42% of the 4,000 mostly starred Python projects on Github use regexes

10% of the Node.js-based webservers are vulnerable

Vulnerable languages

Only 38% of the developers know about the existence of ReDoS

14/48

~ ReDoS attacks: some numbers

42% of the 4,000 mostly starred Python projects on Github use regexes

10% of the Node.js-based webservers are vulnerable

Vulnerable languages

Only 38% of the developers know about the existence of ReDoS

15/48

~ Real-world consequences of ReDoS

16/48

~ Static analysis of ReDoS

Framework for static ReDoS detection

• A tree semantics for the matching

• Sound, fast, and precise analysis

Implemented it in the rat (ReDoSAbstract Tester) tool

(a|a)*
3

Compared to seven other ReDoS detectors

16/48

~ Static analysis of ReDoS

Framework for static ReDoS detection

• A tree semantics for the matching

• Sound, fast, and precise analysis

Implemented it in the rat (ReDoSAbstract Tester) tool

(a|a)*
3

Compared to seven other ReDoS detectors

16/48

~ Static analysis of ReDoS

Framework for static ReDoS detection

• A tree semantics for the matching

• Sound, fast, and precise analysis

Implemented it in the rat (ReDoSAbstract Tester) tool

(a|a)*
3

Compared to seven other ReDoS detectors

17/48

~ Semantics ~

18/48

~ Semantics of regex matching

Let R ∈ Regex and w ∈ Words. We define JRK(w) as a tree.

〈(a | a)∗, ab〉

〈(a | a)(a | a)∗, ab〉

〈a(a | a)∗, ab〉

〈(a | a)∗, b〉

〈(a | a)(a | a)∗, b〉

〈a(a | a)∗, b〉 〈a(a | a)∗, b〉

〈ε, b〉

〈a(a | a)∗, ab〉

〈(a | a)∗, b〉

〈(a | a)(a | a)∗, b〉

〈a(a | a)∗, b〉 〈a(a | a)∗, b〉

〈ε, b〉

〈ε, ab〉

18/48

~ Semantics of regex matching

Let R ∈ Regex and w ∈ Words. We define JRK(w) as a tree.

〈(a | a)∗, ab〉

〈(a | a)(a | a)∗, ab〉

〈a(a | a)∗, ab〉

〈(a | a)∗, b〉

〈(a | a)(a | a)∗, b〉

〈a(a | a)∗, b〉 〈a(a | a)∗, b〉

〈ε, b〉

〈a(a | a)∗, ab〉

〈(a | a)∗, b〉

〈(a | a)(a | a)∗, b〉

〈a(a | a)∗, b〉 〈a(a | a)∗, b〉

〈ε, b〉

〈ε, ab〉

18/48

~ Semantics of regex matching

Let R ∈ Regex and w ∈ Words. We define JRK(w) as a tree.

〈(a | a)∗, ab〉

〈(a | a)(a | a)∗, ab〉

〈a(a | a)∗, ab〉

〈(a | a)∗, b〉

〈(a | a)(a | a)∗, b〉

〈a(a | a)∗, b〉 〈a(a | a)∗, b〉

〈ε, b〉

〈a(a | a)∗, ab〉

〈(a | a)∗, b〉

〈(a | a)(a | a)∗, b〉

〈a(a | a)∗, b〉 〈a(a | a)∗, b〉

〈ε, b〉

〈ε, ab〉

18/48

~ Semantics of regex matching

Let R ∈ Regex and w ∈ Words. We define JRK(w) as a tree.

〈(a | a)∗, ab〉

〈(a | a)(a | a)∗, ab〉

〈a(a | a)∗, ab〉

〈(a | a)∗, b〉

〈(a | a)(a | a)∗, b〉

〈a(a | a)∗, b〉 〈a(a | a)∗, b〉

〈ε, b〉

〈a(a | a)∗, ab〉

〈(a | a)∗, b〉

〈(a | a)(a | a)∗, b〉

〈a(a | a)∗, b〉 〈a(a | a)∗, b〉

〈ε, b〉

〈ε, ab〉

18/48

~ Semantics of regex matching

Let R ∈ Regex and w ∈ Words. We define JRK(w) as a tree.

〈(a | a)∗, ab〉

〈(a | a)(a | a)∗, ab〉

〈a(a | a)∗, ab〉

〈(a | a)∗, b〉

〈(a | a)(a | a)∗, b〉

〈a(a | a)∗, b〉 〈a(a | a)∗, b〉

〈ε, b〉

〈a(a | a)∗, ab〉

〈(a | a)∗, b〉

〈(a | a)(a | a)∗, b〉

〈a(a | a)∗, b〉 〈a(a | a)∗, b〉

〈ε, b〉

〈ε, ab〉

18/48

~ Semantics of regex matching

Let R ∈ Regex and w ∈ Words. We define JRK(w) as a tree.

〈(a | a)∗, ab〉

〈(a | a)(a | a)∗, ab〉

〈a(a | a)∗, ab〉

〈(a | a)∗, b〉

〈(a | a)(a | a)∗, b〉

〈a(a | a)∗, b〉

〈a(a | a)∗, b〉

〈ε, b〉

〈a(a | a)∗, ab〉

〈(a | a)∗, b〉

〈(a | a)(a | a)∗, b〉

〈a(a | a)∗, b〉 〈a(a | a)∗, b〉

〈ε, b〉

〈ε, ab〉

18/48

~ Semantics of regex matching

Let R ∈ Regex and w ∈ Words. We define JRK(w) as a tree.

〈(a | a)∗, ab〉

〈(a | a)(a | a)∗, ab〉

〈a(a | a)∗, ab〉

〈(a | a)∗, b〉

〈(a | a)(a | a)∗, b〉

〈a(a | a)∗, b〉 〈a(a | a)∗, b〉

〈ε, b〉

〈a(a | a)∗, ab〉

〈(a | a)∗, b〉

〈(a | a)(a | a)∗, b〉

〈a(a | a)∗, b〉 〈a(a | a)∗, b〉

〈ε, b〉

〈ε, ab〉

18/48

~ Semantics of regex matching

Let R ∈ Regex and w ∈ Words. We define JRK(w) as a tree.

〈(a | a)∗, ab〉

〈(a | a)(a | a)∗, ab〉

〈a(a | a)∗, ab〉

〈(a | a)∗, b〉

〈(a | a)(a | a)∗, b〉

〈a(a | a)∗, b〉 〈a(a | a)∗, b〉

〈ε, b〉

〈a(a | a)∗, ab〉

〈(a | a)∗, b〉

〈(a | a)(a | a)∗, b〉

〈a(a | a)∗, b〉 〈a(a | a)∗, b〉

〈ε, b〉

〈ε, ab〉

18/48

~ Semantics of regex matching

Let R ∈ Regex and w ∈ Words. We define JRK(w) as a tree.

〈(a | a)∗, ab〉

〈(a | a)(a | a)∗, ab〉

〈a(a | a)∗, ab〉

〈(a | a)∗, b〉

〈(a | a)(a | a)∗, b〉

〈a(a | a)∗, b〉 〈a(a | a)∗, b〉

〈ε, b〉

〈a(a | a)∗, ab〉

〈(a | a)∗, b〉

〈(a | a)(a | a)∗, b〉

〈a(a | a)∗, b〉 〈a(a | a)∗, b〉

〈ε, b〉

〈ε, ab〉

18/48

~ Semantics of regex matching

Let R ∈ Regex and w ∈ Words. We define JRK(w) as a tree.

〈(a | a)∗, ab〉

〈(a | a)(a | a)∗, ab〉

〈a(a | a)∗, ab〉

〈(a | a)∗, b〉

〈(a | a)(a | a)∗, b〉

〈a(a | a)∗, b〉 〈a(a | a)∗, b〉

〈ε, b〉

〈a(a | a)∗, ab〉

〈(a | a)∗, b〉

〈(a | a)(a | a)∗, b〉

〈a(a | a)∗, b〉 〈a(a | a)∗, b〉

〈ε, b〉

〈ε, ab〉

18/48

~ Semantics of regex matching

Let R ∈ Regex and w ∈ Words. We define JRK(w) as a tree.

〈(a | a)∗, ab〉

〈(a | a)(a | a)∗, ab〉

〈a(a | a)∗, ab〉

〈(a | a)∗, b〉

〈(a | a)(a | a)∗, b〉

〈a(a | a)∗, b〉 〈a(a | a)∗, b〉

〈ε, b〉

〈a(a | a)∗, ab〉

〈(a | a)∗, b〉

〈(a | a)(a | a)∗, b〉

〈a(a | a)∗, b〉 〈a(a | a)∗, b〉

〈ε, b〉

〈ε, ab〉

19/48

~ ReDoS Detection ~

20/48

~ Vulnerabilities

Definition

R has a ReDoS vulnerability iff the size of the trees generated by JRK
grows exponentially with the length of the strings

Intuition: stars with nondeterminism are dangerous

• (a | a)∗ matches ab expanding two traces

• (a | a)∗ matches aab expanding four traces

• In general, anb with 2n traces

20/48

~ Vulnerabilities

Definition

R has a ReDoS vulnerability iff the size of the trees generated by JRK
grows exponentially with the length of the strings

Intuition: stars with nondeterminism are dangerous

• (a | a)∗ matches ab expanding two traces

• (a | a)∗ matches aab expanding four traces

• In general, anb with 2n traces

20/48

~ Vulnerabilities

Definition

R has a ReDoS vulnerability iff the size of the trees generated by JRK
grows exponentially with the length of the strings

Intuition: stars with nondeterminism are dangerous

• (a | a)∗ matches ab expanding two traces

• (a | a)∗ matches aab expanding four traces

• In general, anb with 2n traces

20/48

~ Vulnerabilities

Definition

R has a ReDoS vulnerability iff the size of the trees generated by JRK
grows exponentially with the length of the strings

Intuition: stars with nondeterminism are dangerous

• (a | a)∗ matches ab expanding two traces

• (a | a)∗ matches aab expanding four traces

• In general, anb with 2n traces

20/48

~ Vulnerabilities

Definition

R has a ReDoS vulnerability iff the size of the trees generated by JRK
grows exponentially with the length of the strings

Intuition: stars with nondeterminism are dangerous

• (a | a)∗ matches ab expanding two traces

• (a | a)∗ matches aab expanding four traces

• In general, anb with 2n traces

21/48

~ Towards ReDoS Detection

Function to capture nondeterminism:

M2(R) = {w ∈ Words | there are two traces to match w in R}

An algorithm M2 to compute it:

(a | a)∗ (a | a)(a | a)∗ ∩ ε = ∅

(a | a)(a | a)∗ a(a | a)∗ ∩ a(a | a)∗ = aa∗

a(a | a)∗ Atoms do not introduce nondeterminism

21/48

~ Towards ReDoS Detection

Function to capture nondeterminism:

M2(R) = {w ∈ Words | there are two traces to match w in R}

An algorithm M2 to compute it:

(a | a)∗

(a | a)(a | a)∗ ∩ ε = ∅

(a | a)(a | a)∗ a(a | a)∗ ∩ a(a | a)∗ = aa∗

a(a | a)∗ Atoms do not introduce nondeterminism

21/48

~ Towards ReDoS Detection

Function to capture nondeterminism:

M2(R) = {w ∈ Words | there are two traces to match w in R}

An algorithm M2 to compute it:

(a | a)∗ (a | a)(a | a)∗ ∩ ε = ∅

(a | a)(a | a)∗ a(a | a)∗ ∩ a(a | a)∗ = aa∗

a(a | a)∗ Atoms do not introduce nondeterminism

21/48

~ Towards ReDoS Detection

Function to capture nondeterminism:

M2(R) = {w ∈ Words | there are two traces to match w in R}

An algorithm M2 to compute it:

(a | a)∗ (a | a)(a | a)∗ ∩ ε = ∅

(a | a)(a | a)∗

a(a | a)∗ ∩ a(a | a)∗ = aa∗

a(a | a)∗ Atoms do not introduce nondeterminism

21/48

~ Towards ReDoS Detection

Function to capture nondeterminism:

M2(R) = {w ∈ Words | there are two traces to match w in R}

An algorithm M2 to compute it:

(a | a)∗ (a | a)(a | a)∗ ∩ ε = ∅

(a | a)(a | a)∗ a(a | a)∗ ∩ a(a | a)∗ = aa∗

a(a | a)∗ Atoms do not introduce nondeterminism

21/48

~ Towards ReDoS Detection

Function to capture nondeterminism:

M2(R) = {w ∈ Words | there are two traces to match w in R}

An algorithm M2 to compute it:

(a | a)∗ (a | a)(a | a)∗ ∩ ε = ∅

(a | a)(a | a)∗ a(a | a)∗ ∩ a(a | a)∗ = aa∗

a(a | a)∗

Atoms do not introduce nondeterminism

21/48

~ Towards ReDoS Detection

Function to capture nondeterminism:

M2(R) = {w ∈ Words | there are two traces to match w in R}

An algorithm M2 to compute it:

(a | a)∗ (a | a)(a | a)∗ ∩ ε = ∅

(a | a)(a | a)∗ a(a | a)∗ ∩ a(a | a)∗ = aa∗

a(a | a)∗ Atoms do not introduce nondeterminism

22/48

~ ReDoS detection

a(a|a)∗b

Structural induction on R

Run M2 on each star of R

Return an overapproximation of attack

language:

E(R) ∈ Regex

Theorem (Soundness)

If E(R) is empty, then the size of matching trees grows at

most polynomially with the length of input words

The other direction does not hold (no completeness)

Possible false positives, but no false negatives

22/48

~ ReDoS detection

a(a|a)∗b

a3

Structural induction on R

Run M2 on each star of R

Return an overapproximation of attack

language:

E(R) ∈ Regex

Theorem (Soundness)

If E(R) is empty, then the size of matching trees grows at

most polynomially with the length of input words

The other direction does not hold (no completeness)

Possible false positives, but no false negatives

22/48

~ ReDoS detection

a(a|a)∗b

a3 (a|a)∗b

Structural induction on R

Run M2 on each star of R

Return an overapproximation of attack

language:

E(R) ∈ Regex

Theorem (Soundness)

If E(R) is empty, then the size of matching trees grows at

most polynomially with the length of input words

The other direction does not hold (no completeness)

Possible false positives, but no false negatives

22/48

~ ReDoS detection

a(a|a)∗b

a3 (a|a)∗b

(a|a)∗

Structural induction on R

Run M2 on each star of R

Return an overapproximation of attack

language:

E(R) ∈ Regex

Theorem (Soundness)

If E(R) is empty, then the size of matching trees grows at

most polynomially with the length of input words

The other direction does not hold (no completeness)

Possible false positives, but no false negatives

22/48

~ ReDoS detection

a(a|a)∗b

a3 (a|a)∗b

(a|a)∗

Structural induction on R

Run M2 on each star of R

Return an overapproximation of attack

language:

E(R) ∈ Regex

Theorem (Soundness)

If E(R) is empty, then the size of matching trees grows at

most polynomially with the length of input words

The other direction does not hold (no completeness)

Possible false positives, but no false negatives

22/48

~ ReDoS detection

a(a|a)∗b

a3 (a|a)∗b

(a|a)∗

Structural induction on R

Run M2 on each star of R

Return an overapproximation of attack

language:

E(R) ∈ Regex

Theorem (Soundness)

If E(R) is empty, then the size of matching trees grows at

most polynomially with the length of input words

The other direction does not hold (no completeness)

Possible false positives, but no false negatives

22/48

~ ReDoS detection

a(a|a)∗b

a3 (a|a)∗b

(a|a)∗

Structural induction on R

Run M2 on each star of R

Return an overapproximation of attack

language:

E(R) ∈ Regex

Theorem (Soundness)

If E(R) is empty, then the size of matching trees grows at

most polynomially with the length of input words

The other direction does not hold (no completeness)

Possible false positives, but no false negatives

22/48

~ ReDoS detection

a(a|a)∗b

a3 (a|a)∗b

(a|a)∗

Structural induction on R

Run M2 on each star of R

Return an overapproximation of attack

language:

E(R) ∈ Regex

Theorem (Soundness)

If E(R) is empty, then the size of matching trees grows at

most polynomially with the length of input words

The other direction does not hold (no completeness)

Possible false positives, but no false negatives

22/48

~ ReDoS detection

a(a|a)∗b

a3 (a|a)∗b

(a|a)∗

Structural induction on R

Run M2 on each star of R

Return an overapproximation of attack

language:

E(R) ∈ Regex

Theorem (Soundness)

If E(R) is empty, then the size of matching trees grows at

most polynomially with the length of input words

The other direction does not hold (no completeness)

Possible false positives, but no false negatives

23/48

~ Experimental Evaluation ~

24/48

~ Experimental comparison

Implementation: rat

Compared to seven other detectors

Dataset of 74,670 regexes

Found 316 vulnerabilities

(a|a)*
3

OOT SKIP TIME FP FN

rat 178 7,390 1:57:20 49 0

rxxr2 [1] 10 13,765 0:09:29 93 7

rsa [2] 789 16,177 18:48:02 193 1

rsa-full [2] 3,138 16,139 38:11:07 134 1

rexploiter [3] 328 20,202 9:12:34 28 180

rescue [4] 32,208 8,890 325:00:26 0 40

safe-regex 0 0 0:15:40 13,376 21

regexploit 2 421 0:03:41 56 140

redos-detector 2 14,749 0:52:27 14,218 6

1. Static analysis for regular expression exponential runtime via substructural logics. Rathnayake and Thielecke. 2014.

2. Analyzing matching time behavior of backtracking regular expression matchers by using ambiguity of NFA. Weideman et al. 2016.

3. Static detection of dos vulnerabilities in programs that use regular expressions. Wüstholz et al. 2017.

4. ReScue: crafting regular expression DoS attacks. Shen et al. 2018.

24/48

~ Experimental comparison

Implementation: rat
Compared to seven other detectors

Dataset of 74,670 regexes

Found 316 vulnerabilities

(a|a)*
3

OOT SKIP TIME FP FN

rat 178 7,390 1:57:20 49 0

rxxr2 [1] 10 13,765 0:09:29 93 7

rsa [2] 789 16,177 18:48:02 193 1

rsa-full [2] 3,138 16,139 38:11:07 134 1

rexploiter [3] 328 20,202 9:12:34 28 180

rescue [4] 32,208 8,890 325:00:26 0 40

safe-regex 0 0 0:15:40 13,376 21

regexploit 2 421 0:03:41 56 140

redos-detector 2 14,749 0:52:27 14,218 6

1. Static analysis for regular expression exponential runtime via substructural logics. Rathnayake and Thielecke. 2014.

2. Analyzing matching time behavior of backtracking regular expression matchers by using ambiguity of NFA. Weideman et al. 2016.

3. Static detection of dos vulnerabilities in programs that use regular expressions. Wüstholz et al. 2017.

4. ReScue: crafting regular expression DoS attacks. Shen et al. 2018.

24/48

~ Experimental comparison

Implementation: rat
Compared to seven other detectors

Dataset of 74,670 regexes

Found 316 vulnerabilities

(a|a)*
3

OOT SKIP TIME FP FN

rat 178 7,390 1:57:20 49 0

rxxr2 [1] 10 13,765 0:09:29 93 7

rsa [2] 789 16,177 18:48:02 193 1

rsa-full [2] 3,138 16,139 38:11:07 134 1

rexploiter [3] 328 20,202 9:12:34 28 180

rescue [4] 32,208 8,890 325:00:26 0 40

safe-regex 0 0 0:15:40 13,376 21

regexploit 2 421 0:03:41 56 140

redos-detector 2 14,749 0:52:27 14,218 6

1. Static analysis for regular expression exponential runtime via substructural logics. Rathnayake and Thielecke. 2014.

2. Analyzing matching time behavior of backtracking regular expression matchers by using ambiguity of NFA. Weideman et al. 2016.

3. Static detection of dos vulnerabilities in programs that use regular expressions. Wüstholz et al. 2017.

4. ReScue: crafting regular expression DoS attacks. Shen et al. 2018.

24/48

~ Experimental comparison

Implementation: rat
Compared to seven other detectors

Dataset of 74,670 regexes

Found 316 vulnerabilities

(a|a)*
3

OOT SKIP TIME FP FN

rat 178 7,390 1:57:20 49 0

rxxr2 [1] 10 13,765 0:09:29 93 7

rsa [2] 789 16,177 18:48:02 193 1

rsa-full [2] 3,138 16,139 38:11:07 134 1

rexploiter [3] 328 20,202 9:12:34 28 180

rescue [4] 32,208 8,890 325:00:26 0 40

safe-regex 0 0 0:15:40 13,376 21

regexploit 2 421 0:03:41 56 140

redos-detector 2 14,749 0:52:27 14,218 6

1. Static analysis for regular expression exponential runtime via substructural logics. Rathnayake and Thielecke. 2014.

2. Analyzing matching time behavior of backtracking regular expression matchers by using ambiguity of NFA. Weideman et al. 2016.

3. Static detection of dos vulnerabilities in programs that use regular expressions. Wüstholz et al. 2017.

4. ReScue: crafting regular expression DoS attacks. Shen et al. 2018.

24/48

~ Experimental comparison

Implementation: rat
Compared to seven other detectors

Dataset of 74,670 regexes

Found 316 vulnerabilities

(a|a)*
3

OOT SKIP TIME FP FN

rat 178 7,390 1:57:20 49 0

rxxr2 [1] 10 13,765 0:09:29 93 7

rsa [2] 789 16,177 18:48:02 193 1

rsa-full [2] 3,138 16,139 38:11:07 134 1

rexploiter [3] 328 20,202 9:12:34 28 180

rescue [4] 32,208 8,890 325:00:26 0 40

safe-regex 0 0 0:15:40 13,376 21

regexploit 2 421 0:03:41 56 140

redos-detector 2 14,749 0:52:27 14,218 6

1. Static analysis for regular expression exponential runtime via substructural logics. Rathnayake and Thielecke. 2014.

2. Analyzing matching time behavior of backtracking regular expression matchers by using ambiguity of NFA. Weideman et al. 2016.

3. Static detection of dos vulnerabilities in programs that use regular expressions. Wüstholz et al. 2017.

4. ReScue: crafting regular expression DoS attacks. Shen et al. 2018.

25/48

~ Part II: Safety-Nonexploitability Analysis ~

26/48

~ Introduction ~

27/48

~ Abstract interpretation

Technique to prove the absence of runtime errors

Sound but not complete

Too many FPs =⇒ meaningless results

To lower FPs: more precise abstractions

27/48

~ Abstract interpretation

Technique to prove the absence of runtime errors

Sound but not complete

Too many FPs =⇒ meaningless results

To lower FPs: more precise abstractions

27/48

~ Abstract interpretation

Technique to prove the absence of runtime errors

Sound but not complete

Too many FPs =⇒ meaningless results

To lower FPs: more precise abstractions

27/48

~ Abstract interpretation

Technique to prove the absence of runtime errors

Sound but not complete

Too many FPs =⇒ meaningless results

To lower FPs: more precise abstractions

28/48

~ False positives in most analyzers

28/48

~ False positives in most analyzers

29/48

~ Not all bugs are equal

void use_input(char* input) {
char dest[10];
strcpy(dest, input); // Error!

}

void main() {
char buff[100];
use_input(buff);

}

void use_input(char* input) {
char dest[10];
strcpy(dest, input);

}

void main() {
char buff[100];
fgets(buff, sizeof(buff), stdin);
use_input(buff);

}

Security errors are more dangerous

29/48

~ Not all bugs are equal

void use_input(char* input) {
char dest[10];
strcpy(dest, input); // Error!

}

void main() {
char buff[100];
use_input(buff);

}

void use_input(char* input) {
char dest[10];
strcpy(dest, input);

}

void main() {
char buff[100];
fgets(buff, sizeof(buff), stdin);
use_input(buff);

}

Security errors are more dangerous

29/48

~ Not all bugs are equal

void use_input(char* input) {
char dest[10];
strcpy(dest, input); // Error!

}

void main() {
char buff[100];
use_input(buff);

}

void use_input(char* input) {
char dest[10];
strcpy(dest, input);

}

void main() {
char buff[100];
fgets(buff, sizeof(buff), stdin);
use_input(buff);

}

Security errors are more dangerous

30/48

~ Sound abstract safety-nonexploitability analysis

Lower number of alarms by reporting only security-related ones

New hyperproperty: safety-nonexploitability

Sound static analysis

Implementation and experiments

30/48

~ Sound abstract safety-nonexploitability analysis

Lower number of alarms by reporting only security-related ones

New hyperproperty: safety-nonexploitability

Sound static analysis

Implementation and experiments

30/48

~ Sound abstract safety-nonexploitability analysis

Lower number of alarms by reporting only security-related ones

New hyperproperty: safety-nonexploitability

Sound static analysis

Implementation and experiments

30/48

~ Sound abstract safety-nonexploitability analysis

Lower number of alarms by reporting only security-related ones

New hyperproperty: safety-nonexploitability

Sound static analysis

Implementation and experiments

31/48

~ Safety-nonexploitability ~

32/48

~ Syntax

S := x = A (Programs)

| x = input()

| x = rand()

| S ; S
| if (B) S else S
| while (B) S

A := x (Arithmeitc Expressions)

| n
| A � A (� ∈ {+, -, *, /})

B := A < A (Boolean Expressions)

33/48

~ Semantics

x ∈ V (Variables)

m ∈ M = V → Z (Memories)

〈m, i, r〉 ∈ S = M × Z∞ × Z∞ (States)

JSK ∈ D = S → S (Semantics)

Error states are explicitly represented as states with

return = 1

33/48

~ Semantics

x ∈ V (Variables)

m ∈ M = V → Z (Memories)

〈m, i, r〉 ∈ S = M × Z∞ × Z∞ (States)

JSK ∈ D = S → S (Semantics)

Error states are explicitly represented as states with

return = 1

34/48

~ Safety-nonexploitability: a formal definition

The user cannot interfere with the correctness of the program

Changing only user input does not change return

NE = {JSK | ∀〈〈m0, i0, r0〉, 〈m1, i1, r1〉〉, 〈〈m′
0, i′

0, r′
0〉, 〈m′

1, i′
1, r′

1〉〉 ∈ JSK :
m0 = m′

0, r0 = r′
0 =⇒ m1[return] = m′

1[return]}

x = input()
1 / x

Safety-exploitable

x = rand()
1 / x

Safety-nonexploitable

34/48

~ Safety-nonexploitability: a formal definition

The user cannot interfere with the correctness of the program

Changing only user input does not change return

NE = {JSK | ∀〈〈m0, i0, r0〉, 〈m1, i1, r1〉〉, 〈〈m′
0, i′

0, r′
0〉, 〈m′

1, i′
1, r′

1〉〉 ∈ JSK :
m0 = m′

0, r0 = r′
0 =⇒ m1[return] = m′

1[return]}

x = input()
1 / x

Safety-exploitable

x = rand()
1 / x

Safety-nonexploitable

34/48

~ Safety-nonexploitability: a formal definition

The user cannot interfere with the correctness of the program

Changing only user input does not change return

NE = {JSK | ∀〈〈m0, i0, r0〉, 〈m1, i1, r1〉〉, 〈〈m′
0, i′

0, r′
0〉, 〈m′

1, i′
1, r′

1〉〉 ∈ JSK :
m0 = m′

0, r0 = r′
0 =⇒ m1[return] = m′

1[return]}

x = input()
1 / x

Safety-exploitable

x = rand()
1 / x

Safety-nonexploitable

34/48

~ Safety-nonexploitability: a formal definition

The user cannot interfere with the correctness of the program

Changing only user input does not change return

NE = {JSK | ∀〈〈m0, i0, r0〉, 〈m1, i1, r1〉〉, 〈〈m′
0, i′

0, r′
0〉, 〈m′

1, i′
1, r′

1〉〉 ∈ JSK :
m0 = m′

0, r0 = r′
0 =⇒ m1[return] = m′

1[return]}

x = input()
1 / x

Safety-exploitable

x = rand()
1 / x

Safety-nonexploitable

35/48

~ Proving NE ~

36/48

~ Semantic user-input dependency

A variable is tainted iff the user can control its value

T (x) ={JSK | ∃〈〈m0, i0, r0〉, 〈m1, i1, r1〉〉, 〈〈m′
0, i′

0, r′
0〉, 〈m′

1, i′
1, r′

1〉〉 ∈ JSK :
m0 = m′

0, r0 = r′
0 ∧ m1[x] 6= m′

1[x]}

αt(R) = {x | ∀JSK ∈ R : JSK ∈ T (x)} x is tainted in S 4⇐⇒ x ∈ αt({JSK})

36/48

~ Semantic user-input dependency

A variable is tainted iff the user can control its value

T (x) ={JSK | ∃〈〈m0, i0, r0〉, 〈m1, i1, r1〉〉, 〈〈m′
0, i′

0, r′
0〉, 〈m′

1, i′
1, r′

1〉〉 ∈ JSK :
m0 = m′

0, r0 = r′
0 ∧ m1[x] 6= m′

1[x]}

αt(R) = {x | ∀JSK ∈ R : JSK ∈ T (x)} x is tainted in S 4⇐⇒ x ∈ αt({JSK})

36/48

~ Semantic user-input dependency

A variable is tainted iff the user can control its value

T (x) ={JSK | ∃〈〈m0, i0, r0〉, 〈m1, i1, r1〉〉, 〈〈m′
0, i′

0, r′
0〉, 〈m′

1, i′
1, r′

1〉〉 ∈ JSK :
m0 = m′

0, r0 = r′
0 ∧ m1[x] 6= m′

1[x]}

αt(R) = {x | ∀JSK ∈ R : JSK ∈ T (x)}

x is tainted in S 4⇐⇒ x ∈ αt({JSK})

36/48

~ Semantic user-input dependency

A variable is tainted iff the user can control its value

T (x) ={JSK | ∃〈〈m0, i0, r0〉, 〈m1, i1, r1〉〉, 〈〈m′
0, i′

0, r′
0〉, 〈m′

1, i′
1, r′

1〉〉 ∈ JSK :
m0 = m′

0, r0 = r′
0 ∧ m1[x] 6= m′

1[x]}

αt(R) = {x | ∀JSK ∈ R : JSK ∈ T (x)} x is tainted in S 4⇐⇒ x ∈ αt({JSK})

37/48

~ Safety-nonexploitability and taint

JSK ∈ NE ⇐⇒ return is not tainted in S

Idea: overapproximate the semantics, and pair it with

sound taint analysis

37/48

~ Safety-nonexploitability and taint

JSK ∈ NE ⇐⇒ return is not tainted in S

Idea: overapproximate the semantics, and pair it with

sound taint analysis

38/48

~ Analysis ~

39/48

~ A semantic taint analysis

Regular value domains

• find RTEs

Taint domain

• label RTEs as exploitable

Side effect

• enhanced taint precision

x = input()
// tainted = {x}

if (x == 1) {
y = 1

} else {
y = 0

}

// tainted = {x,y}

1 / y

x = y

z = x - y

// tainted = {x,y}

1 / z NE 3

39/48

~ A semantic taint analysis

Regular value domains

• find RTEs

Taint domain

• label RTEs as exploitable

Side effect

• enhanced taint precision

x = input()
// tainted = {x}

if (x == 1) {
y = 1

} else {
y = 0

}

// tainted = {x,y}

1 / y

x = y

z = x - y

// tainted = {x,y}

1 / z NE 3

39/48

~ A semantic taint analysis

Regular value domains

• find RTEs

Taint domain

• label RTEs as exploitable

Side effect

• enhanced taint precision

x = input()
// tainted = {x}

if (x == 1) {
y = 1

} else {
y = 0

}

// tainted = {x,y}

1 / y

x = y

z = x - y

// tainted = {x,y}

1 / z NE 3

39/48

~ A semantic taint analysis

Regular value domains

• find RTEs

Taint domain

• label RTEs as exploitable

Side effect

• enhanced taint precision

x = input()
// tainted = {x}

if (x == 1) {
y = 1

} else {
y = 0

}

// tainted = {x,y}

1 / y

x = y

z = x - y

// tainted = {x,y}

1 / z NE 3

39/48

~ A semantic taint analysis

Regular value domains

• find RTEs

Taint domain

• label RTEs as exploitable

Side effect

• enhanced taint precision

x = input()
// tainted = {x}

if (x == 1) {
y = 1

} else {
y = 0

}

// tainted = {x,y}

1 / y

x = y

z = x - y

// tainted = {x,y}

1 / z NE 3

39/48

~ A semantic taint analysis

Regular value domains

• find RTEs

Taint domain

• label RTEs as exploitable

Side effect

• enhanced taint precision

x = input()
// tainted = {x}

if (x == 1) {
y = 1

} else {
y = 0

}

// tainted = {x,y}

1 / y

x = y

z = x - y

// tainted = {x,y}

1 / z NE 3

39/48

~ A semantic taint analysis

Regular value domains

• find RTEs

Taint domain

• label RTEs as exploitable

Side effect

• enhanced taint precision

x = input()
// tainted = {x}

if (x == 1) {
y = 1

} else {
y = 0

}

// tainted = {x,y}

1 / y

x = y

z = x - y

// tainted = {x,y}

1 / z NE 3

39/48

~ A semantic taint analysis

Regular value domains

• find RTEs

Taint domain

• label RTEs as exploitable

Side effect

• enhanced taint precision

x = input()
// tainted = {x}

if (x == 1) {
y = 1

} else {
y = 0

}

// tainted = {x,y}

1 / y

x = y

z = x - y

// tainted = {x,y}

1 / z NE 3

39/48

~ A semantic taint analysis

Regular value domains

• find RTEs

Taint domain

• label RTEs as exploitable

Side effect

• enhanced taint precision

x = input()
// tainted = {x}

if (x == 1) {
y = 1

} else {
y = 0

}

// tainted = {x,y}

1 / y

x = y

z = x - y

// tainted = {x,y}

1 / z NE 3

39/48

~ A semantic taint analysis

Regular value domains

• find RTEs

Taint domain

• label RTEs as exploitable

Side effect

• enhanced taint precision

x = input()
// tainted = {x}

if (x == 1) {
y = 1

} else {
y = 0

}

// tainted = {x,y}

1 / y

x = y

z = x - y

// tainted = {x,y}

1 / z NE 3

39/48

~ A semantic taint analysis

Regular value domains

• find RTEs

Taint domain

• label RTEs as exploitable

Side effect

• enhanced taint precision

x = input()
// tainted = {x}

if (x == 1) {
y = 1

} else {
y = 0

}

// tainted = {x,y}

1 / y

x = y

z = x - y

// tainted = {x,y}

1 / z

NE 3

39/48

~ A semantic taint analysis

Regular value domains

• find RTEs

Taint domain

• label RTEs as exploitable

Side effect

• enhanced taint precision

x = input()
// tainted = {x}

if (x == 1) {
y = 1

} else {
y = 0

}

// tainted = {x,y}

1 / y

x = y

z = x - y

// tainted = {x,y}

1 / z NE 3

40/48

~ Experimental Evaluation ~

41/48

~ Implementation

Implementation: Mopsa-Nexp

Finds common C safety (exploitable) errors

Based on Mopsa

42/48

~ Experiments

77 real-world programs from Coreutils

• Up to ~4000 LOCs

Compared precision and performance of Mopsa-Nexp with
Mopsa

Analyzer Alarms Time

Mopsa 4, 715 1:17:06

Mopsa-Nexp 1, 217 1:28:42

• We prove ~74% of the alarms nonexploitable

• Performance overhead: <16%

42/48

~ Experiments

77 real-world programs from Coreutils

• Up to ~4000 LOCs

Compared precision and performance of Mopsa-Nexp with
Mopsa

Analyzer Alarms Time

Mopsa 4, 715 1:17:06

Mopsa-Nexp 1, 217 1:28:42

• We prove ~74% of the alarms nonexploitable

• Performance overhead: <16%

42/48

~ Experiments

77 real-world programs from Coreutils

• Up to ~4000 LOCs

Compared precision and performance of Mopsa-Nexp with
Mopsa

Analyzer Alarms Time

Mopsa 4, 715 1:17:06

Mopsa-Nexp 1, 217 1:28:42

• We prove ~74% of the alarms nonexploitable

• Performance overhead: <16%

43/48

~ Related Work ~

44/48

~ Related Work

Noninterference [5]

• NE can be seen as noninterference of return
• We can prove noninterference with our analysis

• Techniques for noninterference are not sufficient for NE

Taint analysis [6]

• We rely on a semantic definition

• Combination with values

• Sinks in NE are RTEs

Robust reachability [7]

• Different handling of rand: ∃ vs ∀

44/48

~ Related Work

Noninterference [5]

• NE can be seen as noninterference of return
• We can prove noninterference with our analysis

• Techniques for noninterference are not sufficient for NE

Taint analysis [6]

• We rely on a semantic definition

• Combination with values

• Sinks in NE are RTEs

Robust reachability [7]

• Different handling of rand: ∃ vs ∀

44/48

~ Related Work

Noninterference [5]

• NE can be seen as noninterference of return
• We can prove noninterference with our analysis

• Techniques for noninterference are not sufficient for NE

Taint analysis [6]

• We rely on a semantic definition

• Combination with values

• Sinks in NE are RTEs

Robust reachability [7]

• Different handling of rand: ∃ vs ∀

45/48

~ Conclusions ~

46/48

~ ReDoS: contributions

Novel tree semantics

ReDoS formalization

Sound static analysis

Implementation and experiments on real-world data

• The analysis is fast and precise

• The only sound detector in practice

Future work

• Polynomial ReDoS analysis

• Support for regular expression extensions

• Integration within a program analysis

46/48

~ ReDoS: contributions

Novel tree semantics

ReDoS formalization

Sound static analysis

Implementation and experiments on real-world data

• The analysis is fast and precise

• The only sound detector in practice

Future work

• Polynomial ReDoS analysis

• Support for regular expression extensions

• Integration within a program analysis

47/48

~ Safety-nonexploitability: contributions

Novel property: safety-nonexploitability

Equivalent characterization with semantic taint

Sound semantic taint analysis

Implementation and experiments on real-world data

• Performance overhead <16%

• Filtered >70% of the alarms

Future work

• Extend nonexploitability to other properties

• Field-sensitive C taint analysis

• ReDoS-nonexploitability analysis

47/48

~ Safety-nonexploitability: contributions

Novel property: safety-nonexploitability

Equivalent characterization with semantic taint

Sound semantic taint analysis

Implementation and experiments on real-world data

• Performance overhead <16%

• Filtered >70% of the alarms

Future work

• Extend nonexploitability to other properties

• Field-sensitive C taint analysis

• ReDoS-nonexploitability analysis

48/48

~ Conclusions

Security matters

Security poses non-trivial challenges

Formal reasoning is the only way to ensure

security

1/2

~ References I

Asiri Rathnayake and Hayo Thielecke.

Static analysis for regular expression exponential runtime via substructural logics.

CoRR, abs/1405.7058, 2014.

Nicolaas Weideman, Brink van der Merwe, Martin Berglund, and Bruce W. Watson.

Analyzing matching time behavior of backtracking regular expression matchers by using ambiguity of NFA.

In International Conference on Implementation and Application of Automata, CIAA, volume 9705 of Lecture Notes in Computer Science, pages 322–334.

Springer, 2016.

Valentin Wüstholz, Oswaldo Olivo, Marijn J. H. Heule, and Isil Dillig.

Static detection of dos vulnerabilities in programs that use regular expressions.

In International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS, volume 10206 of Lecture Notes in Computer

Science, pages 3–20, 2017.

Yuju Shen, Yanyan Jiang, Chang Xu, Ping Yu, Xiaoxing Ma, and Jian Lu.

ReScue: crafting regular expression DoS attacks.

In International Conference on Automated Software Engineering, ASE, pages 225–235. ACM, 2018.

Joseph A. Goguen and José Meseguer.

Security policies and security models.

In Security and Privacy, pages 11–20. IEEE Computer Society, 1982.

Li Li, Tegawendé F. Bissyandé, Mike Papadakis, Siegfried Rasthofer, Alexandre Bartel, Damien Octeau, Jacques Klein, and Yves Le Traon.

Static analysis of android apps: a systematic literature review.

Inf. Softw. Technol., 88:67–95, 2017.

2/2

~ References II

Guillaume Girol, Benjamin Farinier, and Sébastien Bardin.

Not all bugs are created equal, but robust reachability can tell the difference.

In Computer Aided Verification, CAV, volume 12759, pages 669–693. Springer, 2021.

	Introduction
	Part I: Regular Expression Denial of Service Attacks
	Introduction
	Semantics
	ReDoS Detection
	Experimental Evaluation
	Part II: Safety-Nonexploitability Analysis
	Introduction
	Safety-nonexploitability
	Proving N-6muE
	Analysis
	Experimental Evaluation
	Related Work
	Conclusions
	Appendix

