Static Analysis for Security Properties of Software
by Abstract Interpretation

Francesco Parolini

PhD Defense
APR team
LIP6, Sorbonne Université
Paris, France

26/06/2024

Q onsns |!P @ éﬁQ
b Sages e s { ! .:’

~ Introduction ~

~ Software & errors

Software is everywhere

~ Software & errors

Software is everywhere

Increasing size and complexity = more bugs

~ Software & errors

Software is everywhere

Increasing size and complexity = more bugs

~ Software & errors

Software is everywhere

Increasing size and complexity = more bugs

We need techniques for reliable software

~ Software verification

~ Software verification

[P] C* Safe

~ Software verification

[P] C* Safe

~ Software verification

[P] C* Safe

“Absence of evidence is not evidence of absence”

~ Software verification

[P] C* Safe

“Absence of evidence is not evidence of absence”

Theorem (Rice)

All non-trivial program properties are not computable

~ Software verification

[P] C* Safe

“Absence of evidence is not evidence of absence”

Theorem (Rice)

All non-trivial program properties are not computable

Formal methods study trade-offs to prove correctness

~ Abstract interpretation

5/48

~ Abstract interpretation

[P]f

[P] C [P]* <" Safe

5/48

~ False positives and negatives

~ False positives and negatives

6/48

~ False positives and negatives

[P]F

(s

Can raise false positives

~ False positives and negatives

[P]* [PTF

(s

Can raise false positives

~ False positives and negatives

[P]* [PTF

(s

Can raise false positives Forbids false negatives

~ The case of cybersecurity

Security vulnerabilities matter to
e (Citizens

Social Media Hacking: Statistics Overview

Cybercrimes on social media platforms account for $3.25 Billion in annual
global revenue.

This statistic demonstrates the magnitude of the problem. The $3.25 billion in annual
global revenue lost to cybererimes on social media highlights the need for increased
security measures to protect users from malicious actors. It also underscores the
importance of educating users on how to protect themselves from cyberattacks.

~ The case of cybersecurity

Security vulnerabilities matter to
 (Citizens
¢ Companies

=" Microsoft

Microsoft got hacked by state sponsored
group it was investigating

Posted: January 23,2024 by Pieter Atz

In a spy-vs-spy type of scenario, Microsoft has acknowledged that a group called Midnight
Blizzard (also known as APT29 or Cozy Bear), gained access to a Microsoft legacy non-
production test tenant account

~ The case of cybersecurity

Security vulnerabilities matter to
e (Citizens
¢ Companies
e Governments

Global Affairs investigating
'malicious’ hack after VPN
compromised for over one
month

A month-long cyber breach forced the department to shut
down some internal services and appears to have compromised
the data and emails of numerous employees

Christopher Nardi

Published Jan 30,2024 - Last updated Jan 30,2024 « 3 minute read

~ The challenges of cybersecurity

Defining when a program is secure

Safe Not safe

Secure Not Secure

~ The challenges of cybersecurity

Defining when a program is secure

Safe Not safe Security .spaflé over
¢ Availability
 Confidentiality

e Integrity

Secure Not Secure

~ The challenges of cybersecurity

Defining when a program is secure
Safe Not safe Security .spaflé over
¢ Availability
 Confidentiality
e Integrity
Adapt existing techniques to security

Secure Not Secure

~ This thesis

e

Techniques to prove programs secure by formal reasoning
for ReDoS attacks and exploitable runtime errors

~ This thesis

e

Techniques to prove programs secure by formal reasoning
for ReDoS attacks and exploitable runtime errors

Semantic frameworks

~ This thesis

e

Techniques to prove programs secure by formal reasoning
for ReDoS attacks and exploitable runtime errors

Semantic frameworks

Mathematical formalization of the vulnerabilities

~ This thesis

e

Techniques to prove programs secure by formal reasoning
for ReDoS attacks and exploitable runtime errors

Semantic frameworks
Mathematical formalization of the vulnerabilities

Sound, automatic analyses

~ This thesis

e

Techniques to prove programs secure by formal reasoning
for ReDoS attacks and exploitable runtime errors

Semantic frameworks
Mathematical formalization of the vulnerabilities
Sound, automatic analyses

Experiments on real-world data

~ Part I: Regular Expression Denial of Service Attacks ~

~ Introduction ~

~ ReDoS attacks: what

Regular expression Denial of Service (ReDoS)
Algorithmic complexity attack

Matching engines have exponential complexity

aaazasaaaaaaasasaaaaaaaas
aaaaaaaaaaaaaaaaaaaaaaaaaa
d33adadadadadadaaasaldalaaaaaa
433333333ga3aaaaasasdalaaaaaa
43333333agalaaaznzasdalaaaaas -
a3aaaaaaaaasaaaaaasaas)

~ ReDoS attacks: what

Regular expression Denial of Service (ReDoS)
Algorithmic complexity attack

Matching engines have exponential complexity

aaazasaaaaaaasasaaaaaaaas
aaaaaaaaaaaaaaaaaaaaaaaaaa
d33adadadadadadaaasaldalaaaaaa
433333333ga3aaaaasasdalaaaaaa
43333333agalaaaznzasdalaaaaas -
a3aaaaaaaaasaaaaaasaas)

¥
1 import re
2 user_string = get_textarea()
3 re.match('(ala)*b', user_string)

~ ReDoS attacks: what

Regular expression Denial of Service (ReDoS)
Algorithmic complexity attack

Matching engines have exponential complexity

aaazasaaaaaaasasaaaaaaaas
aaaaaaaaaaaaaaaaaaaaaaaaaa
d33adadadadadadaaasaldalaaaaaa
433333333ga3aaaaasasdalaaaaaa
43333333agalaaaznzasdalaaaaas -
a3aaaaaaaaasaaaaaasaas)

1 import re
2 user_string
3 re.match('

textarea()
user_string)

3
4
3
6
7
8
9
‘]
1

~ Example

import re
email_regex = \
r'a([0-9a-zA-Z]([-.\w]l*[0-9a-zA-Z])*\
@(([0-9a-zA-Z])+([-\wl*[0-9a-zA-Z])*\.)+[a-zA-Z] {2,9})$'
for 1 in range(1, 41):
re.match(email_regex, 'a' % 1)

Time (s)

35000

30000

25000

20000

15000

10000

5000

4 [time

~ ReDoS attacks: some numbers

42% of the 4,000 mostly starred Python projects on Github use regexes

~ ReDoS attacks: some numbers

42% of the 4,000 mostly starred Python projects on Github use regexes

10% of the Node.js-based webservers are vulnerable

~ ReDoS attacks: some numbers

42% of the 4,000 mostly starred Python projects on Github use regexes
10% of the Node.js-based webservers are vulnerable

Vulnerable languages

L s ® @D 4w

~ ReDoS attacks: some numbers

42% of the 4,000 mostly starred Python projects on Github use regexes
10% of the Node.js-based webservers are vulnerable

Vulnerable languages

L s ® @D 4w

Only 38% of the developers know about the existence of ReDoS

~ Real-world consequences of ReDoS

Stack Exchange Network al
Status

Outage Postmortem - July 20, 2016

80 ove thor Trpe Plattorm ot

00 Vet g+ Voot

Details of the Cloudflare outage on
July 2,2019

The ovents of July 2

Version 251
sanuarye, 2071
Coiro(G 251 has e retessed:

WARNING: s 53 securly upcate

(ReDe)

atac ongme.
Other bug fes:

ixmarker posilons for unclosed paths

£ sl gmment nnodevertces

~ Static analysis of ReDoS

Framework for static ReDoS detection
¢ A tree semantics for the matching
e Sound, fast, and precise analysis

~ Static analysis of ReDoS

Framework for static ReDoS detection
¢ A tree semantics for the matching
e Sound, fast, and precise analysis

Implemented it in the rat (ReDoS Abstract Tester) tool
e_o

/ /
(ala)* — =%
-

~ Static analysis of ReDoS

Framework for static ReDoS detection
¢ A tree semantics for the matching
e Sound, fast, and precise analysis

Implemented it in the rat (ReDoS Abstract Tester) tool
e_o

/ /
(ala)* — =%
-

Compared to seven other ReDoS detectors

~ Semantics ~

~ Semantics of regex matching

Let R € Regex and w € Words. We define [R](w) as a tree.

((a]a)*,ab)

~ Semantics of regex matching

Let R € Regex and w € Words. We define [R](w) as a tree.

((a]a)*,ab)
_—
((a]a)(a]a),ab)

~ Semantics of regex matching

Let R € Regex and w € Words. We define [R](w) as a tree.

((a]a)*,ab)

~ Semantics of regex matching

Let R € Regex and w € Words. We define [R](w) as a tree.

((a]a)*,ab)

~ Semantics of regex matching

Let R € Regex and w € Words. We define [R](w) as a tree.

((a]a)*,ab)

~ Semantics of regex matching

Let R € Regex and w € Words. We define [R](w) as a tree.

((a]a)*,ab)

~ Semantics of regex matching

Let R € Regex and w € Words. We define [R](w) as a tree.

((a]a)*,ab)
7/
((a]a)(a]a)*,ab)
— /
(a(a]a)*, ab)
|
((a]a)",b)
|
((ala)(a|a)*b)

~ Semantics of regex matching

Let R € Regex and w € Words. We define [R](w) as a tree.

((a]a)*,ab)
/
((a]a)(a]a),ab)
/
(a(a]a)*, ab)
((a]a)",b)
T

~ Semantics of regex matching

Let R € Regex and w € Words. We define [R](w) as a tree.

((a]a)*,ab)
/
((a]a)(a]a),ab)
/ \
(a(a]a)*, ab) {a(a |)", ab)
((a]a)",b)
T

~ Semantics of regex matching

Let R € Regex and w € Words. We define [R](w) as a tree.

((a]a)*,ab)

/
((a]a)(a]a)*,ab)
/ \
(a(a | a)*,ab) (a(a | a)F, ab)
((a]a)",b) ((a]a)*,b)
((a]a)(aa)*b) (c.b) {(a]a)(a]a)*,b)y (e.b)
VRN /

{a(a| a)*,b) (a(a|a)*,b) (a(a | a)*,b) (a(a|a)*,b)

~ Semantics of regex matching

Let R € Regex and w € Words. We define [R](w) as a tree.

/ \
((a]a)(a|a)*,ab) (€, ab)
/ \
(ala | o), ab) e | o ab)
((a]a)",b) ((a]a)*,b)
N NG
((a]a)(aa)*b) (c.b) {((a]a)(a|a)*,b) (b

~ ReDoS Detection ~

~ Vulnerabilities

R has a ReDoS vulnerability iff the size of the trees generated by [R]
grows exponentially with the length of the strings

~ Vulnerabilities

Definition
R has a ReDoS vulnerability iff the size of the trees generated by [R]
grows exponentially with the length of the strings

Intuition: stars with nondeterminism are dangerous

~ Vulnerabilities

Definition
R has a ReDoS vulnerability iff the size of the trees generated by [R]
grows exponentially with the length of the strings

Intuition: stars with nondeterminism are dangerous
* (a | a)* matches ab expanding two traces

~ Vulnerabilities

Definition
R has a ReDoS vulnerability iff the size of the trees generated by [R]
grows exponentially with the length of the strings

Intuition: stars with nondeterminism are dangerous
* (a | a)* matches ab expanding two traces
¢ (a | a)* matches aab expanding four traces

~ Vulnerabilities

Definition
R has a ReDoS vulnerability iff the size of the trees generated by [R]
grows exponentially with the length of the strings

Intuition: stars with nondeterminism are dangerous
* (a | a)* matches ab expanding two traces
¢ (a | a)* matches aab expanding four traces
e In general, a"b with 2" traces

~ Towards ReDoS Detection

Function to capture nondeterminism:

Mz (R) = {w € Words | there are two traces to match w in R}

~ Towards ReDoS Detection

Function to capture nondeterminism:
Mz (R) = {w € Words | there are two traces to match w in R}

An algorithm M2 to compute it:

(a]a)"

~ Towards ReDoS Detection

Function to capture nondeterminism:
Mz (R) = {w € Words | there are two traces to match w in R}

An algorithm M2 to compute it:

~ Towards ReDoS Detection

Function to capture nondeterminism:
Mz (R) = {w € Words | there are two traces to match w in R}

An algorithm M2 to compute it:

(a]a)(a|a)

~ Towards ReDoS Detection

Function to capture nondeterminism:
Mz (R) = {w € Words | there are two traces to match w in R}

An algorithm M2 to compute it:

~ Towards ReDoS Detection

Function to capture nondeterminism:
Mz (R) = {w € Words | there are two traces to match w in R}

An algorithm M2 to compute it:

~ Towards ReDoS Detection

Function to capture nondeterminism:
Mz (R) = {w € Words | there are two traces to match w in R}

An algorithm M2 to compute it:

*

!

(a|a)a|a)* -~ ala |a)*Na(a|a)* =aa
!
|

ala|a) - Atoms do not introduce nondeterminism

~ ReDoS detection

Structural induction on R
a(ala)*b

~ ReDoS detection

Structural induction on R
a(ala)*b

.
ay

~ ReDoS detection

Structural induction on R

~ ReDoS detection

Structural induction on R

~ ReDoS detection

Structural induction on R
a(ala)*b Run M2 on each star of R

~ ReDoS detection

Structural induction on R

a(ala)*b Run M2 on each star of R
SN
a/ (ala)*b
!

~ ReDoS detection

Structural induction on R

a(ala)*d Run M2 on each star of R
N
a.// (a|a)*b Return an overapproximation of attack
! language:

E(R) € Regex

~ ReDoS detection

Structural induction on R

a(ala)*b Run M2 on each star of R
N
a.// (ala)*b Return an overapproximation of attack
! language:
(ala)* 1 E(R) € Regex

Theorem (Soundness)

If E(R) is empty, then the size of matching trees grows at
most polynomially with the length of input words

~ ReDoS detection

Structural induction on R

a(ala)*b Run M2 on each star of R
N
a.// (ala)*b Return an overapproximation of attack
! language:
(ala)* 1 E(R) € Regex

Theorem (Soundness)

If E(R) is empty, then the size of matching trees grows at
most polynomially with the length of input words

The other direction does not hold (no completeness)
Possible false positives, but no false negatives

~ Experimental Evaluation ~

~ Experimental comparison

Implementation: rat

(ala)x —

~ Experimental comparison

Implementation: rat

Compared to seven other detectors

(ala)x —

~ Experimental comparison

Implementation: rat
Compared to seven other detectors
Dataset of 74,670 regexes

(ala)x —

~ Experimental comparison

Implementation: rat

Compared to seven other detectors
Dataset of 74,670 regexes

Found 316 vulnerabilities

(ala)x —

~ Experimental comparison

Implementation: rat

Compared to seven other detectors (a]a)* 200

Dataset of 74,670 regexes ¢
Found 316 vulnerabilities
OOT SKIP TIME FP FN
rat 178 7,390 1:57:20 49 0
rxxr2 [1] 10 13,765 0:09:29 93 7
rsa [2] 789 16,177 18:48:02 193 1
rsa-full [2] 3,138 16,139 38:11:07 134 1
rexploiter [3] 328 20,202 9:12:34 28 180
rescue [4] 32,208 8,890 325:00:26 0 40
safe-regex 0 0 0:15:40 13,376 21
regexploit 2 421 0:03:41 56 140
redos-detector 2 14,749 0:52:27 14,218 6

1. Static analysis for regular expression exponential runtime via substructural logics. Rathnayake and Thielecke. 2014.

2. Analyzing matching time behavior of backtracking regular expression matchers by using ambiguity of NFA. Weideman et al. 2016.
3. Static detection of dos vulnerabilities in programs that use regular expressions. Wiistholz et al. 2017.

4. ReScue: crafting regular expression DoS attacks. Shen et al. 2018.

~ Part II: Safety-Nonexploitability Analysis ~

~ Introduction ~

~ Abstract interpretation

Technique to prove the absence of runtime errors

~ Abstract interpretation

Technique to prove the absence of runtime errors

Sound but not complete

~ Abstract interpretation

Technique to prove the absence of runtime errors
Sound but not complete

Too many FPs —> meaningless results

~ Abstract interpretation

Technique to prove the absence of runtime errors
Sound but not complete
Too many FPs —> meaningless results

To lower FPs: more precise abstractions

~ False positives in most analyzers

The ASTREE Analyzer*

Patrick Cousot 2, Radhia Cousot 3, Jeréme Feret 2, Laurent Mauborgne 2,
Antoine Miné 2, David Monniaux »? & Xavier Rival 2

' CNRS
2 Ecole Normale Supérieure, Paris, France (Firstname.LastnameQens.fr)
3 Ecole Polytechnique, Palaiseau, France (Firstname.Lastname@polytechnique.fr)

http://wuw.astree.ens.fr/

Abstract. ASTREE is an abstract interpretation-based static program
analyzer aiming at proving automatically the absence of run time errors
in programs written in the C programming language. It has been applied
with success to large embedded control-command safety critical real-
time software generated automatically from synchronous specifications,
producing a correctness proof for complex software without any false
alarm in a few hours of computation. —
—

~ False positives in most analyzers

Combinations of Reusable Abstract Domains for
a Multilingual Static Analyzer*

Matthien Journault!, Antoine Miné!?, Raphaél Monat!, and Abdelraonf

The ASTREE Analyzer* Ouadjaout!

¥ Sorbonne Université, CNRS, LIPG, F-75005 Pa
firstnane. lastnaneClip6. fr
* Institut Universitaire de France, F-75003, Pars, France

s, France

Patrick Cousot 2, Radhia Cousot », Jeréme Feret 2, Laurent Mauborgne
Antoine Miné 2, David Monniaux 2 & Xavier Rival 2

Abstract. We discuss the design of MoPs, an ongoing effort to do-
N . sign novel semantic static analyzer by abstract interpretation. MopsA

. CNRS sirives to achieve a high degree of modularity and extensibility by con-

2 Ecole Normale Supé Paris, France (Firstname.Lastname@ens.fr) sidering value abstractions for numeric, pointer, objects, arrays, ete. as

well as syntax-driven iterators and control-flow abstractions uniformly
as domain modules, which offer & unified signature and loose coupling,
50 that they can be combined and reused at will. Moreover, domains can
dynamically rewrite expressions, which simplifies the design of relational
abstractions, enconrages a design based on layered semantics, and en
sbles domain reuse aceos diffeent alyses and diferent lngusges We
¢ prliminacy applctions of MOPSA analyzing simple progeams
s of th Python programming languages, checking them
Pe—— nmvuhlv{ exceptions.

3 Ecole Polytechnique, Palaiseau, France (Firstname.Lastname@polytechnique.fr)

http://wuw.astree.ens.fr/

in subsets

Abstract. ASTREE is an abstract interpretation-based static program
zer aiming at proving automatically the absence of run time errors
written in the C programming language. It has been applied

ana

in programs

Checks summary: 12738 total, , A217 warnings

with success to large embedded control-command safety critical real- Stub condition: 66 total, 34 warnings

time software generated automatically from synchronous specifications, Invalid memory access: 6956 total, , 133 warnings
producing a correctness proof for complex software without any false Division by zero: 10 total,

alarm in a few hours of computation. Integer overflow: 6363 total, 44 warnings

—

Invalid shift: 86 total,

Invalid pointer comparison: 1 total,

Insufficient variadic arguments: 1 total,

Insufficient format arguments: 71 total, 3 warnings
Invalid type of format argument: 54 total, , A3 warnings

~ Not all bugs are equal

void use_input(char* input) {
char dest[10];
strcpy(dest, input); // Error!
}

void main() {
char buff[100];
use_input (buff) ;
}

~ Not all bugs are equal

void use_input(char* input) { void use_input(char* input) {
char dest[10]; char dest[10];
strcpy(dest, input); // Error! strcpy(dest, input);

} }

void main() {

void main() { char buff[100];
char buff[100]; fgets(buff, sizeof (buff), stdin);
use_input (buff) ; use_input (buff) ;

~ Not all bugs are equal

void use_input(char* input) { void use_input(char* input) {
char dest[10]; char dest[10];
strcpy(dest, input); // Error! strcpy(dest, input);

} }

void main() {

void main() { char buff[100];
char buff[100]; fgets(buff, sizeof (buff), stdin);
use_input (buff) ; use_input (buff) ;

} }

Security errors are more dangerous

~ Sound abstract safety-nonexploitability analysis

Lower number of alarms by reporting only security-related ones

~ Sound abstract safety-nonexploitability analysis

Lower number of alarms by reporting only security-related ones

New hyperproperty: safety-nonexploitability

~ Sound abstract safety-nonexploitability analysis

Lower number of alarms by reporting only security-related ones
New hyperproperty: safety-nonexploitability

Sound static analysis

~ Sound abstract safety-nonexploitability analysis

Lower number of alarms by reporting only security-related ones
New hyperproperty: safety-nonexploitability
Sound static analysis

Implementation and experiments

~ Safety-nonexploitability ~

~ Syntax

S:=x=A (Programs)
= input ()

II

= rand ()

;S

if (B) S else S
while (B) S

wn

A =
| n
| Ao A (oef+, -, x, /})

(Boolean Expressions)

kel

(Arithmeitc Expressions)

(ov}
1
=
A
=

~ Semantics

xeV (Variables)
meM=V—=Z (Memories)
(m,i,r) €S =M x Z> x Z* (States)

[sSjeD=S—S (Semantics)

~ Semantics

xeV (Variables)
meM=V—=Z (Memories)
(m,i,r) €S =M x Z> x Z* (States)
[sSjeD=S—S (Semantics)

Error states are explicitly represented as states with
return =1

~ Safety-nonexploitability: a formal definition

The user cannot interfere with the correctness of the program

~ Safety-nonexploitability: a formal definition

The user cannot interfere with the correctness of the program

Changing only user input does not change return

~ Safety-nonexploitability: a formal definition

The user cannot interfere with the correctness of the program

Changing only user input does not change return

NE = {[8] | V((mo, io, o), (ma, iv, 1)), {{my, dg, 7o), (m, iy,m1)) € [8] -

mo = myg,ro =1, => my|return| = m/[return]}

~ Safety-nonexploitability: a formal definition

The user cannot interfere with the correctness of the program

Changing only user input does not change return

NE = {[8] | V((mo, io, o), (ma, iv, 1)), {{my, dg, 7o), (m, iy,m1)) € [8] -

mo = myg,ro =1, => my|return| = m/[return]}

x = input() x = rand()
1/ x 1/ x

Safety-exploitable Safety-nonexploitable

~ Proving 4& ~

~ Semantic user-input dependency

A variable is tainted iff the user can control its value

~ Semantic user-input dependency

A variable is tainted iff the user can control its value

9(){) :{[[S]] ’ 3<(m0,i0,r0>, <m1,i1,r1>>, <<m67i67T6>7 <m/1,2/1,7'/1>> S [[Sﬂ :
mo = mg, o = 1o Ama[x] # mi[x]}

~ Semantic user-input dependency

A variable is tainted iff the user can control its value

9(){) :{[[S]] | 3<<TTLO,i0,T0>, <m1,i1,r1>>, <<m67i67T6>7 <m/1,2/1,7'/1>> S [[Sﬂ :
mo = mg, o = 1o Ama[x] # mi[x]}

a(Z)={x|V[S] € Z:[S] € 7(x)}

~ Semantic user-input dependency

A variable is tainted iff the user can control its value

9(){) :{[[S]] | 3<<TTLO,i0,T0>, <m1,i1,r1>>, <<m67i67T6>7 <m/1,2/1,7'/1>> S [[Sﬂ :
mo = mg, o = 1o Ama[x] # mi[x]}

a(Z)={x|V[S] € Z:[8] € T (x)} =xistaintedin S £ oxe a:({[S]})

~ Safety-nonexploitability and taint

[S] € A#& <= return is not tainted in S

~ Safety-nonexploitability and taint

[S] € A#& <= return is not tainted in S

Idea: overapproximate the semantics, and pair it with
sound taint analysis

~ Analysis ~

~ A semantic taint analysis

Regular value domains
e find RTEs
Taint domain
e label RTEs as exploitable

~ A semantic taint analysis

Regular value domains

e find RTEs
Taint domain

e label RTEs as exploitable
Side effect

e enhanced taint precision

~ A semantic taint analysis

x = input()
// tainted = {z}

Regular value domains

e find RTEs
Taint domain

e label RTEs as exploitable
Side effect

e enhanced taint precision

~ A semantic taint analysis

x = input()
// tainted = {z}
if (x == 1) {

Regular value domains) leel c
e find RTEs v =0
Taint domain }
e label RTEs as exploitable
Side effect

e enhanced taint precision

~ A semantic taint analysis

x = input()
// tainted = {z}
if (x == 1) {

Regular value domains y leel c

e find RTEs v =0
Taint domain }

e label RTEs as exploitable // tainted = {z,y}
Side effect

e enhanced taint precision

~ A semantic taint analysis

x = input()
// tainted = {z}
if (x == 1) {

Regular value domains y leel c

e find RTEs v =0
Taint domain }

e label RTEs as exploitable // tainted = {z,y}
Side effect 1/y

e enhanced taint precision

~ A semantic taint analysis

x = input()
// tainted = {z}
if (x == 1) {

Regular value domains y leel c

e find RTEs v =0
Taint domain }

e label RTEs as exploitable // tainted = {z,y}
Side effect 1/y !

e enhanced taint precision

~ A semantic taint analysis

x = input()
// tainted = {z}
if (x == 1) {

Regular value domains y leel c

e find RTEs v =0
Taint domain }

e label RTEs as exploitable // tainted = {z,y}
Side effect 1/y !

e enhanced taint precision x =7y

~ A semantic taint analysis

Regular value domains

e find RTEs
Taint domain

e label RTEs as exploitable
Side effect

e enhanced taint precision

x = input()
// tainted = {z}
if (x == 1) {

y=1
} else {
y=0

}
// tainted = {z,y}
1/y !

X

y

z =X -y

~ A semantic taint analysis

x = input()
// tainted = {z}
if (x == 1) {

Regular value domains y Zl;l c

e find RTEs v =0
Taint domain }

e label RTEs as exploitable // tainted = {z,y}
Side effect 1/y !

e enhanced taint precision x =7y

z =X -y

// tainted = {z,y}

~ A semantic taint analysis

x = input()
// tainted = {z}
if (x == 1) {

Regular value domains y Zl;l c

e find RTEs v =0
Taint domain }

e label RTEs as exploitable // tainted = {z,y}
Side effect 1/y I

e enhanced taint precision x =7y

zZ=x-73
// tainted = {z,y}
1/ z

~ A semantic taint analysis

x = input()
// tainted = {z}
if (x == 1) {

Regular value domains y Zl;l c

e find RTEs v =0
Taint domain }

e label RTEs as exploitable // tainted = {z,y}
Side effect 1/y I

e enhanced taint precision x =7y

zZ=%xX-73
// tainted = {z,y}
1/ z NES

~ Experimental Evaluation ~

~ Implementation

Implementation: Mopsa-Nexp
Finds common C safety (exploitable) errors

Based on Mopsa

~ Experiments

77 real-world programs from Coreutils
e Up to ~4000 LOCs

Compared precision and performance of Mopsa-Nexp with
Mopsa

~ Experiments

77 real-world programs from Coreutils
e Up to ~4000 LOCs

Compared precision and performance of Mopsa-Nexp with
Mopsa

Analyzer Alarms Time
Mopsa 4,715 1:17:06
Mopsa-Nexp 1,217 1:28:42

~ Experiments

77 real-world programs from Coreutils
e Up to ~4000 LOCs

Compared precision and performance of Mopsa-Nexp with
Mopsa

Analyzer Alarms Time
Mopsa 4,715 1:17:06
Mopsa-Nexp 1,217 1:28:42

* We prove ~74% of the alarms nonexploitable
¢ Performance overhead: <16%

~ Related Work ~

~ Related Work

Noninterference [5]
e & can be seen as noninterference of return
¢ We can prove noninterference with our analysis
 Techniques for noninterference are not sufficient for A&

~ Related Work

Noninterference [5]

e & can be seen as noninterference of return

¢ We can prove noninterference with our analysis

 Techniques for noninterference are not sufficient for A&
Taint analysis [6]

¢ We rely on a semantic definition

¢ Combination with values

e Sinks in .#& are RTEs

~ Related Work

Noninterference [5]
e & can be seen as noninterference of return
¢ We can prove noninterference with our analysis
 Techniques for noninterference are not sufficient for A&
Taint analysis [6]
¢ We rely on a semantic definition
¢ Combination with values
e Sinks in .#& are RTEs
Robust reachability [7]
e Different handling of rand: 3 vs V

~ Conclusions ~

~ ReDoS: contributions

Novel tree semantics
ReDoS formalization
Sound static analysis

Implementation and experiments on real-world data

¢ The analysis is fast and precise
o \2;.
p S

O 4

¢ The only sound detector in practice

~ ReDoS: contributions

Novel tree semantics
ReDoS formalization
Sound static analysis

Implementation and experiments on real-world data
¢ The analysis is fast and precise

¢ The only sound detector in practice

Future work

¢ Polynomial ReDoS analysis
¢ Support for regular expression extensions

¢ Integration within a program analysis

~ Safety-nonexploitability: contributions

Novel property: safety-nonexploitability
Equivalent characterization with semantic taint
Sound semantic taint analysis

Implementation and experiments on real-world data
¢ Performance overhead <16%
¢ Filtered >70% of the alarms

~ Safety-nonexploitability: contributions

Novel property: safety-nonexploitability
Equivalent characterization with semantic taint
Sound semantic taint analysis

Implementation and experiments on real-world data
¢ Performance overhead <16%
¢ Filtered >70% of the alarms

Future work

¢ Extend nonexploitability to other properties
¢ Field-sensitive C taint analysis

¢ ReDoS-nonexploitability analysis

~ Conclusions

Security matters
Security poses non-trivial challenges

Formal reasoning is the only way to ensure
security

~ References I

B W B D

Asiri Rathnayake and Hayo Thielecke.

Static analysis for regular expression exponential runtime via substructural logics.
CoRR, abs/1405.7058, 2014.

Nicolaas Weideman, Brink van der Merwe, Martin Berglund, and Bruce W. Watson.

Analyzing matching time behavior of backtracking regular expression matchers by using ambiguity of NFA.
In International Conference on Implementation and Application of Automata, CIAA, volume 9705 of Lecture Notes in Computer Science, pages 322—-334.
Springer, 2016.

Valentin Wiistholz, Oswaldo Olivo, Marijn J. H. Heule, and Isil Dillig.

Static detection of dos vulnerabilities in programs that use regular expressions.

In International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS, volume 10206 of Lecture Notes in Computer
Science, pages 3-20, 2017.

Yuju Shen, Yanyan Jiang, Chang Xu, Ping Yu, Xiaoxing Ma, and Jian Lu.

ReScue: crafting regular expression DoS attacks.
In International Conference on Automated Software Engineering, ASE, pages 225-235. ACM, 2018.

Joseph A. Goguen and José Meseguer.

Security policies and security models.
In Security and Privacy, pages 11-20. IEEE Computer Society, 1982.

Li Li, Tegawendé F. Bissyandé, Mike Papadakis, Siegfried Rasthofer, Alexandre Bartel, Damien Octeau, Jacques Klein, and Yves Le Traon.

Static analysis of android apps: a systematic literature review.
Inf. Softw. Technol., 88:67-95, 2017.

~ References I1

@ Guillaume Girol, Benjamin Farinier, and Sébastien Bardin.
Not all bugs are created equal, but robust reachability can tell the difference.
In Computer Aided Verification, CAV, volume 12759, pages 669—693. Springer, 2021.

	Introduction
	Part I: Regular Expression Denial of Service Attacks
	Introduction
	Semantics
	ReDoS Detection
	Experimental Evaluation
	Part II: Safety-Nonexploitability Analysis
	Introduction
	Safety-nonexploitability
	Proving N-6muE
	Analysis
	Experimental Evaluation
	Related Work
	Conclusions
	Appendix

